Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochwertige energiereiche und dichte Ionenstrahlen durch Laserbeschleunigung

08.11.2011
Forscher am Heidelberger Max-Planck-Institut für Kernphysik konnten in einer theoretischen Studie zeigen, dass mittels hochintensiver frequenzmodulierter Laserpulse Protonen aus einem Gastarget direkt beschleunigt werden können.

Die erreichbaren Energien, die Energieschärfe und Qualität wie auch Intensität der so erzeugten Ionenstrahlen wären für Anwendungen nutzbar – so z. B. für die Tumortherapie. Diese Technik der Laserbeschleunigung könnte in der Zukunft eine wesentlich kostengünstigere Alternative zu herkömmlichen Beschleunigersystemen darstellen. [Phys. Rev. Lett. 107, 185002 (2011)]


Abb. 1: Schema zur direkten Beschleunigung von Protonen durch einen intensiven frequenzmodulierten (‚chirped‘) Laserpuls.
Grafik: MPIK


Abb. 2: (a) Oszillierende Feldstärke eines gewöhnlichen Laserpulses fester Frequenz. (b) Spezieller frequenzmodulierter Laserpuls zur Beschleunigung von Protonen.
Grafik: MPIK

Kaum ein Gebiet in der Physik hat sich in den letzten Jahrzehnten so stürmisch entwickelt wie das der Hochleistungslaser. In der letzten Dekade war es vor allem die Möglichkeit der direkten Beschleunigung von geladenen Teilchen durch starke Laserfelder. Im Hintergrund steht die Idee, konventionelle Beschleunigeranlagen zukünftig durch wesentlich kompaktere und kostengünstigere Einrichtungen zu ersetzen. Dies ist von besonderem Interesse für die Tumortherapie mit Ionen. Diese wird bereits erfolgreich eingesetzt – z. B. am neuen Heidelberger Ionenstrahl-Therapiezentrum (HIT) – benötigt aber neben einem konventionellen Beschleuniger für eine optimale Bestrahlung aus allen Raumrichtungen im so genannten Rasterscanverfahren zur Strahlablenkung ein aufwendiges Magnetsystem von mehreren 100 Tonnen Masse.

In früheren Arbeiten hatten Forscher der Abteilung von Christoph Keitel am Max-Planck-Institut für Kernphysik Heidelberg in Modellrechnungen untersucht, auf welchem Wege mittels extrem starker Lichtfelder Ionenstrahlen mit den gewünschten Eigenschaften erzeugt werden können. Kernpunkte waren dabei eine ausreichend große Beschleunigung für verfügbare Laserintensitäten sowie eine hohe Energieschärfe (besser als 1 %) für das Rasterscanverfahren. Letztere war vor allem eine Schwäche der Beschleunigung in lasergenerierten extrem dichten Plasmen. Stattdessen wurde die direkte Beschleunigung von bereits erzeugten Ionen theoretisch modelliert.

Die Erforschung der Beschleunigungsmechanismen war aber nur der erste Schritt. Eine wesentliche Herausforderung liegt in der Entwicklung geeigneter Quellen zur Erzeugung der zu beschleunigenden Ionen in der erforderlichen Dichte. Herkömmliche Ionenquellen sind davon noch viele Größenordnungen entfernt. Eine alternative Möglichkeit stellen Laser-Ionenquellen dar, in denen ein Laser zunächst ein Target ionisiert und die so gewonnenen Ionen beschleunigt. In Zusammenarbeit mit Wissenschaftlern der American University of Sharjah (Vereinigte Arabische Emirate) und der Universität Rostock konnte die Heidelberger Gruppe nun theoretisch zeigen, dass durch Beschuss eines Wasserstoff-Gastargets mit speziellen hochintensiven Laserpulsen Protonenstrahlen mit bisher unerreichter Energie und Qualität erzeugt werden können.

Hierbei wird das Gas zunächst zu Beginn des Laserpulses bei ansteigender Intensität rasch ionisiert und die Elektronen von den schwereren Protonen weg beschleunigt, wobei sie relativistische Energien erreichen. Bei genügend hoher Stärke des Laserfeldes werden schließlich auch die Protonen direkt durch das Feld beschleunigt (Abb. 1). „Damit dies möglichst effizient geschieht, haben wir sog. frequenzmodulierte Laserpulse betrachtet, deren Lichtfrequenz sich während der Dauer des Pulses ändert“ – erklärt der an dem Projekt arbeitende Doktorand Benjamin Galow. „Ein gewöhnlicher Laserpuls mit fester Frequenz erzeugt praktisch keine Beschleunigung der schweren Ionen, da sich die Wirkung des hin- und her oszillierenden Feldes letztlich ausmittelt“ (s. Abb. 2a). Diese Symmetrie wird bei einem frequenzmodulierten Laserpuls gebrochen, wo in der mittleren Hälfte des Pulses das Feld langsam und mit einem Übergewicht in eine (hier positive) Richtung oszilliert (Abb. 2b).

Anhand mathematischer Modellrechnungen, die durch Computersimulationen unter realistischen Plasmabedingungen bestätigt wurden, demonstrieren die Forscher, dass mit verfügbaren Laserintensitäten (ca. 10^21 Watt pro Quadratzentimeter) Protonen von 250 Megaelektronenvolt Energie mit nur 1% Energiebreite in dichten Paketen von 10 Millionen Teilchen erzeugt werden können – dies entspricht auch den grundsätzlichen Anforderungen für eine mögliche Anwendung in der Tumortherapie. Hierfür müssten die Strahlen nach der Beschleunigung allerdings noch ionenoptisch bearbeitet werden, um Schwankungen der Laserpulse zu kompensieren, was noch eine technische Herausforderung darstellt. Zukünftige Lasersystem wie ELI oder HiPER könnten darüber hinaus die Möglichkeit eröffnen, energiescharfe Protonenstrahlen von mehreren Gigaelektronenvolt Energie zu erzeugen.

Originalveröffentlichung:

Benjamin J. Galow, Yousef I. Salamin, Tatyana V. Liseykina, Zoltán Harman, and Christoph H. Keitel:
Dense monoenergetic proton beams from chirped laser-plasma interaction.
Phys. Rev. Lett. 107, 185002 (2011), doi: 10.1103/PhysRevLett.107.185002
Kontakt:
Dr. Zoltán Harman
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Tel.: 06221/516-170
E-Mail: harman@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/keitel/harman/
http://link.aps.org/doi/10.1103/PhysRevLett.100.155004

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops