Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017

Forschende der ETH Zürich entwickelten im Auftrag des Cern ein Hightech-Gerät zur Erzeugung von sehr präzisen Hochspannungspulsen. Es könnte in der nächsten Generation von Teilchenbeschleunigern zum Einsatz kommen.

Die bekannteste Anwendung von Hochspannungspulsen ist wohl die in elektrischen Weidezäunen. Doch auch Teilchenbeschleuniger an Grossforschungsanlagen wie dem Cern in Genf sind auf Hochspannungspuls-Generatoren angewiesen – solche, die im Unterschied zu Weidezaungeräten Pulse mit sehr viel höherer Energie und höherer Spannung erzeugen.


Postdoc Sebastian Blume hat den Pulsgenerator während seiner Doktorarbeit massgeblich mitentwickelt. (Bild: ETH Zürich / Peter Rüegg)


Genf, der Genfersee und der sich in Betrieb befindliche Teilchenbeschleuniger LHC am Cern. In gestrichelten Linien sind die möglichen zukünftigen Teilchenbeschleuniger Clic und FCC dargestellt. (Karte: Google Earth)

Am Cern laufen derzeit die Vorarbeiten für das nächste Grossforschungsprojekt ab 2025. Einer von zwei Projektkandidaten ist der Bau eines 50 Kilometer langen Linearbeschleunigers in einem Tunnel, der von Nyon bis zum Rhone-Durchbruch bei Bellegarde in Frankreich reichen soll (Projekt Clic, siehe Kasten). Im Rahmen einer Zusammenarbeit mit dem Cern entwickelten Forschende der ETH Zürich einen für diesen Beschleuniger benötigten Pulsgenerator. Vor wenigen Tagen lieferten sie ihren Prototypen ans Cern. Dort wird er nun auf Herz und Nieren geprüft.

Der rund drei Kubikmeter grosse Pulsgenerator erzeugt aus der 400-Volt-Spannung des öffentlichen Stromnetzes Pulse von 180‘000 Volt, die exakt 140 Millionstelsekunden dauern. Damit das öffentliche Stromnetz gleichmässig belastet und nicht durch Pulsspitzen gestört wird, werden im Innern des Pulsgenerators 8 grosse und beinahe 200 kleine Kondensatoren (Zwischenspeicher) kontinuierlich geladen und dann 50 mal pro Sekunde entladen. Ein speziell entwickelter Transformator sorgt dafür, dass die gewünschte Ausgangsspannung möglichst schnell und effizient erreicht wird.

Mehrere Hundert Beschleunigungsstufen

Im möglichen zukünftigen Cern-Grossforschungsprojekt werden Elektronen und Positronen (Elektron-Antiteilchen) beschleunigt. «Diese Beschleunigung geschieht in einem Klystron. Dieses Gerät ist auf die Hochspannungspulse angewiesen, die unser Pulsgenerator liefert», erklärt Jürgen Biela, Professor für Hochleistungselektronik an der ETH Zürich. In einem Klystron werden die 140 Mikrosekunden dauernden Pulse genutzt, um daraus ein sehr hochfrequentes Wechselfeld zu erzeugen. Und in diesem Wechselfeld werden Elektronen beziehungsweise Positronen beschleunigt.

Falls der Clic-Beschleuniger gebaut wird, braucht es dafür über tausend Klystrone, um Elektronen und Positronen stufenweise bis auf nahezu Lichtgeschwindigkeit zu beschleunigen. Jedes Klystron würde von einem eigenen Pulsgenerator gespeist.

Echtzeitmessung für maximale Effizienz

Zu den grössten Herausforderungen für die ETH-Wissenschaftler gehörte, den Pulsgenerator so zu bauen, dass die erzeugten Pulse alle exakt gleich lang und ihre Spannung mit einer relativen Toleranz von bloss einem Hundertausendstel gleich hoch sind. Ausserdem war es eine Vorgabe des Cern, dass bei einem Puls die Spannung extrem schnell von 0 Volt auf 180‘000 Volt und später wieder zurück springt. Um dies zu erreichen, misst das Gerät den Stromfluss hunderttausend Mal pro Sekunde und steuert ihn in Echtzeit.

«Bei einem langsameren Pulssprung würde mehr ungenutzte Leistung an das Klystron übertagen, was die Energieeffizienz des Pulsgenerators schmälern würde», erklärt Sebastian Blume. Er war im Rahmen seiner Doktorarbeit in Bielas Labor massgeblich an der Entwicklung des Pulsgenerators beteiligt. Die Effizienz ist nur schon daher zentral, weil es um verhältnismässig hohe Energiemengen geht: Ein Pulsgenerator hat eine mehr als hundertmal höhere Leistung als eine Waschmaschine oder ein grosser Staubsauger.
Bereits an der Entwicklung der Pulsgeneratoren für SwissFEL, der vor wenigen Monaten eingeweihten Synchrotron-Strahlungsquelle am Paul-Scherrer-Institut, war ETH-Professor Biela massgeblich beteiligt. Dies im Rahmen eines gemeinsamen Projekts mit der Schweizer Elektrotechnikfirma Ampegon.

[Kasten:]
Linearbeschleuniger oder grösserer Ringbeschleuniger?

Der Teilchenbeschneuniger LHC (Large Hadron Collider) am Cern wird voraussichtlich noch bis 2035 oder 2040 betrieben. Für die Zeit danach werden derzeit zwei mögliche Grossforschungsprogramme diskutiert, die in Konkurrenz zueinander stehen. Welches davon umgesetzt wird, entscheidet das Cern voraussichtlich innerhalb der nächsten drei Jahre.

Beim Projekt Clic (Compact Linear Collider) sollen in einem 50 Kilometer langen Tunnel werden von einem Ende Elektronen und vom anderen Ende Positronen zur Tunnelmitte hin beschleunigt und dort miteinander zur Kollision gebracht. Mit einem solchen Linearbeschleuniger können Elementarteilchen wie das Higgs-Boson sehr viel genauer vermessen werden als dies mit dem LHC derzeit möglich ist oder mit zweiten diskutierten Zukunftsprojekt FCC (Future Circular Collider) möglich würde.
Bei letzterem steht ein Beschleunigerring mit einem Umfang von 80 bis 100 Kilometern zur Diskussion. Zum Vergleich: Der LHC hat einen Umfang von 27 Kilometern. Mit dem FCC würde man eine siebenmal höhere Kollisionsenergie erreichen als mit dem LHC. Er hätte gegenüber Clic den Vorteil, dass man damit besser neue grundlegende Effekte und Teilchen entdecken könnte.

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/05/teilchenbe...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics