Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungsrechner zur Simulation von Laserprozessen in der Nanophotonik

16.12.2010
Computersimulationen sind aus Forschung und Entwicklung heutzutage nicht mehr wegzudenken. Sie ermöglichen einen detaillierten Einblick in Prozesse, aus dem sich Lösungsansätze für konkrete Fragestellungen ableiten lassen.

Die Simulation von Laser-Fertigungsverfahren muss eine große Spannweite von Zeit- und Längenskalen berücksichtigen, insbesondere bei neuen Verfahren aus dem Bereich der Mikro- und Nanophotonik. Dies erfordert spezielle Algorithmen, die am Fraunhofer-Institut für Lasertechnik ILT bereits erfolgreich angewendet werden, sowie ein hohes Maß an Rechenleistung. Im Rahmen des »Zentrums für Nanophotonik« hat das Fraunhofer ILT nun einen Hochleistungs-Rechencluster aufgebaut.

Gerade bei Laserfertigungsprozessen lassen sich wichtige Prozessgrößen in den wenigen Mikrometer kleinen Prozesszonen aufgrund der kleinen Abmessungen und der sehr hohen Temperatur schlecht messen. Zur Optimierung dieser Prozesse werden daher immer häufiger Computersimulationen eingesetzt. Denn diese erlauben es, in die Prozesse »hineinzusehen« und sind im Vergleich zu Experimenten leichter automatisierbar und oft kosteneffizienter. Zudem lassen sich bei Simulationen Schwankungen und Messunsicherheiten ausschließen oder gezielt berücksichtigen.

Multiskalen – kein Problem für den Rechencluster

Simulationen von Laser-Fertigungsverfahren sind meist so genannte Multiskalenprobleme: Eine große Ausdehnung des Bauteils muss mit sehr hoher Auflösung berechnet werden. Bei der Mikrobearbeitung ist eine Auflösung von wenigen Nanometern und ein Berechnungsgebiet mit einer Ausdehnung von mehreren Millimetern nötig. Beispielsweise muss bei der Bearbeitung von Dünnschichtsolarzellen darauf geachtet werden, dass Strukturen in den nur einige 100 Nanometer dünnen Schichten extrem präzise und gleichmäßig abgetragen werden.

»Nano for Macro«

Aber auch bei der Makrobearbeitung, zum Beispiel dem Schneiden von dicken Stahlblechen, wird die Beherrschung kleinskaliger Effekte zunehmend wichtiger, um die Prozessgrenzen zu erweitern. Zur Optimierung des Schmelzaustriebs beim Laserschneiden werden beispielsweise Grenzschichtphänomene von Überschallgasströmungen in der Schneidfuge detailliert analysiert.

Hohe Rechenleistung im »Zentrum für Nanophotonik«

Die benötigte große Anzahl an Gitterpunkten übersteigt hinsichtlich des Bedarfs an Rechenzeit und Speicherplatz die Kapazitäten herkömmlicher Workstations. Die Förderung des neuen Aachener »Zentrums für Nanophotonik« durch das Land NRW ermöglichte nun den Aufbau eines Hochleistungs-Rechenclusters für Simulationen dieser Multiskalenaufgaben am Fraunhofer ILT. Die letzte Ausbaustufe des Hochleistungsrechners wurde im November installiert und in Betrieb genommen. Bei der Ausarbeitung des Konzeptes setzten die Aachener Forscher auf eine heterogene Rechnerarchitektur aus Mehrkernprozessoren und speziellen Hochleistungsrechnern in CUDA-Architektur. Hierbei werden Teile der Berechnungen auf Grafikprozessoren (GPUs) ausgeführt. Dieses moderne Konzept ist für die massiv parallele Ausführung von häufig wiederkehrenden Berechnungsschritten besonders geeignet. Das installierte Clustersystem verfügt über 376 CPUs und acht Grafikprozessorsysteme mit insgesamt 1920 GPUs. Die Speicherkapazität beträgt knapp 2 Terabyte Hauptspeicher und 67 Terabyte Festplattenspeicher. Davon befinden sich 20 Terabyte in redundanten Festplatten-Verbünden. Innerhalb des Clusters erfolgt der Datenaustausch über ein schnelles InfiniBand-Netzwerk. Die theoretische Gesamt-Rechenleistung liegt bei knapp 10 Teraflops, was in etwa der Leistung von 1000 modernen Büro-PCs entspricht. »Das System ist exklusiv und rund um die Uhr verfügbar. Somit können wir für unsere Forschung und unsere Kunden ohne lange Wartezeiten Simulationen speziell für Laserprozesse durchführen. Das erleichtert unsere Forschungsarbeit enorm und spart darüber hinaus Zeit und Geld«, resümiert Dr. Jens Schüttler, Projektleiter am Fraunhofer ILT.

Anwendungsfelder

Mit dem neuen Hochleistungsrechnersystem können komplexe Fragestellungen aus der Lasermaterialbearbeitung mit hoher Auflösung in kurzer Rechenzeit simuliert werden. Anwendungsbeispiele sind die molekulardynamische Simulation des Abtragens mit ultrakurzen Pulsen, die Auslegung von Mikrobearbeitungsprozessen sowie das Design von Gasströmungen und Schneidgasdüsen. Ebenso lässt sich die Propagation der Laserstrahlung auf Wellenlängenskala und Stabilität der Schmelzdynamik beim Laserstrahlschneiden simulieren. Interessant ist dieses Angebot für Anlagenhersteller und Endanwender von Laserbearbeitungsmaschinen, die ihre Prozesse analysieren, optimieren und weiterentwickeln möchten.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dr. Jens Schüttler
Modellierung und Simulation
Telefon +49 241 8906-680
jens.schuettler@ilt.fraunhofer.de
Dipl. Phys. Ulrich Jansen
Modellierung und Simulation
Telefon +49 241 8906-680
ulrich.jansen@ilt.fraunhofer.de
Prof. Dr. Wolfgang Schulz
Modellierung und Simulation
Telefon +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften