Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungsmikroskopie für Membranrezeptoren

22.05.2015

Im neuen Sonderforschungsbereich (SFB) ReceptorLight untersuchen Wissenschaftler aus Jena und Würzburg mit modernster Lichtmikroskopie die Funktion von Membranrezeptoren. Die Mediziner, Physiker, Chemiker, Biochemiker und Biologen wollen sowohl neue Erkenntnisse zur Arbeitsweise dieser Sensoren in der Zellmembran gewinnen, als auch die Hochleistungs-Lichtmikroskopie methodisch weiterentwickeln. Die Deutsche Forschungsgemeinschaft fördert den SFB/Transregio für vier Jahre mit über zehn Millionen Euro.

Als wichtige Schaltmoleküle sind Membranrezeptoren an nahezu allen Lebensprozessen beteiligt. Diese im allgemeinen komplex aufgebauten Proteine sitzen wie sehr sensible Antennen in den äußeren Zellbegrenzungen, den Zellmembranen, und warten auf Signale, die in Form kleiner Moleküle, sogenannter Liganden, kommen und sich spezifisch und passgenau an die jeweiligen Rezeptoren anlagern können.


Präparation und Messungen der rezeptorgesteuerten Aktivität von Nervenzellen im Labor der AG Experimentelle Neurologie am Uniklinikum Jena

Michael Szabo/Uniklinikum Jena

Der Rezeptor ändert dann die chemische Gestalt und somit seine Eigenschaften und gibt so den Startschuss für andere Signal- oder auch Stofftransporte in der Zelle. Membranrezeptoren sind z.B. die Docking-Stationen für Adrenalin und Wachstumshormone, für Nikotin und Opiate.

In den vergangenen Jahren haben neue lichtmikroskopische Methoden zum besseren Verständnis der Arbeitsweise von Membranrezeptoren beigetragen. „Ein Hauptvorteil von Licht als physikalischem Werkzeug liegt dabei in seiner vergleichsweise geringen Störung biologischer Prozesse und Strukturen“, betont Professor Klaus Benndorf.

„Damit waren substanziell neue Erkenntnisse zur Bindungsgeschwindigkeit, aber auch zur Lokalisation der Rezeptoren möglich, teilweise mit einer räumlichen Auflösung im Bereich von 20 Nanometern, also weit unter der optischen Auflösungsgrenze von Ernst Abbe“, so Benndorf weiter.

Der Physiologe vom Universitätsklinikum Jena ist Sprecher des jetzt von der Deutschen Forschungsgemeinschaft neu eingerichteten Sonderforschungsbereiches „ReceptorLight“ mit Wissenschaftlern aus Jena und Würzburg, der genau hier ansetzt. In 22 Teilprojekten und mit einem ganzen Arsenal an Mikroskopietechniken wollen die Forscher die Schaltpläne verschiedenster Membranrezeptoren weiter entschlüsseln. Je nach Fragestellung werden sie dazu auch an der Weiterentwicklung der Methoden und der Auswertung der gewonnenen Bilder arbeiten.

Eine der eingesetzten Methoden ist die von Professor Markus Sauer entwickelte dSTORM-Technik, die durch die Lichtinduzierte Steuerung der Fluoreszenzeigenschaften von Farbstoffen und die stochastische Auswertung vieler Einzelmolekülbilder eine extrem genaue Aussage über Ort und Anzahl von Molekülen erlaubt.

„Um in einem Experiment die räumliche Verteilung von mehr als zehn verschiedenen Zielmolekülen darstellen zu können, brauchen wir ein mehrstufiges Markierungs-, Detektions- und Bleichverfahren, das wir auf verschiedene Farbstoffe ausweiten wollen“, beschreibt der Physikochemiker vom Biozentrum der Universität Würzburg und stellvertretender SFB-Sprecher das Programm eines Projektes, dass er zusammen mit Professor Rainer Heintzmann vom Leibniz-Institut für Photonische Technologien und vom Institut für Physikalische Chemie in Jena bearbeitet.

In einem ebenfalls an beiden Standorten des SFB beheimateten Projekt untersuchen der Jenaer Neurologe Professor Christian Geis und der Biophysiker PD Dr. Sören Doose die molekularen Mechanismen einer Gehirnentzündung, bei der die Patienten Autoantikörper gegen einen Glutamatrezeptor in der Zellmembran von Nervenzellen bilden.

Von elektrophysiologischen Messungen, Zwei-Photonen-Fluoreszenzmikroskopie und hochauflösender Bildgebung wie dSTORM dieses Rezeptors erwarten sich die Forscher Erkenntnisse zu den Grundprinzipien neurologischer Autoimmunerkrankungen mit bislang unerreichter räumlicher und zeitlicher Auflösung.

Und auch Rezeptoren in Pflanzenzellen stehen im Fokus der Wissenschaftler: Die Würzburger Pflanzenwissenschaftler Professor Rainer Hedrich und Professor Dietmar Geiger erforschen mittels hochauflösender Fluoreszenzmikroskopie und Fluoreszenz-Resonanzenergietransfer das Schaltverhalten von Rezeptoren des Trockenstresshormons, das die Spaltöffnungen reguliert.

Die ReceptorLight-Arbeitsgruppen in Würzburg und Jena bündeln ihr vielfältiges methodisches Können auf dem Gebiet der Hochleistungs-Lichtmikroskopie mit den Kenntnissen der Physiologie und Biophysik verschiedenster Membranrezeptoren. Dabei werden sie nicht nur hochmoderne lichtmikroskopische Methoden, sondern auch spezielle Algorithmen zur Bilddatenanalyse und ein eigenes Forschungs- und Bilddatenmanagement gemeinsam nutzen, die jeweils in eigenständigen Teilprojekten etabliert werden.

„Wir wollen die Funktionsweise der Membranrezeptoren besser verstehen und dabei die Möglichkeiten der lichtmikroskopischen Bildgebung - sowohl in der räumlichen und zeitlichen Auflösung, als auch in der Komplexität der betrachteten biologischen Systeme - vorantreiben“, so Klaus Benndorf.

Kontakt:
Prof. Dr. Klaus Benndorf,
Institut für Physiologie II, Universitätsklinikum Jena
Tel.: 03641/934350
E-Mail: Klaus.Benndorf[at]med.uni-jena.de

Prof. Dr. Markus Sauer
Biozentrum, Universität Würzburg,
Tel.: 0931/31-88687
E-Mail: m.sauer[at]uni-wuerzburg.de

Dr. Uta von der Gönna | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie