Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hocheffiziente nichtlineare Metamaterialien für die Laser-Technik: Eine Million mal besser

03.07.2014

Trotz aller Fortschritte gibt es noch immer nicht für alle gewünschten Frequenzen geeignete Laser-Systeme.

Manche dieser Frequenzen kann man mit Frequenzverdopplern erzeugen, die nichtlineare optische Eigenschaften nutzen. Wissenschaftler der Technischen Universität München (TUM) und der University of Texas (Austin, USA) haben nun einen optischen Baustein entwickelt, dessen nur 400 Nanometer dicke Schicht, 100-mal dünner als ein menschliches Haar, verschiedenste Frequenzen verdoppeln kann und eine Million mal effizienter ist als traditionelle Materialien mit nichtlinearen optischen Eigenschaften.


Ein nur 400 Nanometer dicker, nichtlinearer Spiegel aus knapp 100 Halbleiterschichten verdoppelt die Frequenz des eingestrahlten Lichts. Grafik: University of Texas, Austin

Laser haben sich für viele Anwendungen fest etabliert. Doch noch immer gibt es Wellenlängen, für die es keine oder nur sehr große und teure Systeme gibt. Andererseits werden für die Sensorik und für medizinische Anwendungen kompakte Lasersysteme gesucht, beispielsweise für Wellenlängen vom nahen Infrarot bis in die Terahertz-Region.

Forscher der Technischen Universität München und der University of Texas in Austin (USA) haben nun einen nur 400 Nanometer dicken nichtlinearen Spiegel entwickelt, der die Frequenz des eingestrahlten Lichts verdoppelt. Dafür reicht eine Eingangslichtintensität wie die eines Laserpointers. Gemessen an der Eingangsintensität und der Strukturdicke sind die neuen optischen Bausteine etwa eine Million mal effizienter als die besten herkömmlichen nichtlinearen Materialien.

Während beim Einsatz konventioneller Materialien mit nichtlinearen optischen Eigenschaften die Phasengeschwindigkeiten der Eingangs- und Ausgangswellen genau abgestimmt werden müssen, entfällt diese Einschränkung bei dem neuen Material. Seine Gesamtdicke ist deutlich kürzer ist als die Wellenlänge.

Das Supersandwich

Das Wundermaterial der Physiker besteht aus einer Abfolge dünner Schichten aus Indium, Gallium und Arsen einerseits und Aluminium, Indium und Arsen andererseits. Knapp 100 dieser Schichten, jede zwischen einem und zwölf Nanometer dick, stapeln sie übereinander.

Auf der Oberfläche befindet sich ein Muster aus asymmetrischen, kreuzartigen Strukturen aus Gold, auf der Unterseite eine durchgängige Goldschicht. Mit der Schichtdicke und der Oberflächenstruktur besitzen die Forscher zwei Stellschrauben, mit denen sie die Struktur auf die jeweilige Wellenlänge präzise maßschneidern können.

Licht mit 8000 Nanometern Wellenlänge verwandelt das Material in Licht mit 4000 Nanometern Wellenlänge. „Mit Laserlicht in diesem Frequenzbereich lassen sich beispielsweise Gassensoren für die Umwelttechnik bauen“, sagt Frederic Demmerle, Mitarbeiter des Projekts am Walter Schotty Institut der TU München.

Kleiner als die Wellenlänge

Die Fähigkeit, die Frequenz eines Lichtstrahls zu verdoppeln, beruht auf den speziellen elektronischen Eigenschaften des Materials. Weil die Halbleiterschichten nur wenige Nanometer dick sind, können die von den elektromagnetischen Schwingungen des Lichts angeregten Elektronen nur noch ganz bestimmte Zustände einnehmen.

„Eine solche Struktur nennen wir gekoppelte Quantentöpfe“, sagt Frederic Demmerle. „Indem wir nun in einem exakt definierten Abstand eine weitere dünne Schicht folgen lassen, können wir diese Zustände zusammenschieben oder auseinander ziehen und damit genau auf die gewünschte Wellenlänge einstellen.“

Einen wichtigen Anteil an der hohen Effizienz des Bausteins hat das von den Forschern an der University of Texas unter der Leitung der Professoren Michail Belkin und Andrea Alu entwickelte Muster aus asymmetrischen, kreuzförmigen Goldstrukturen. Das Design dieser Strukturen können die Forscher optimal auf maximale Resonanz mit den Ein- und Ausgangsfrequenzen abstimmen.

Die Muster sind zwar wesentlich kleiner als die Wellenlänge des Lichtes, doch die regelmäßige metallische Struktur sorgt dafür, dass das Licht in das Material einkoppelt. Ihre besondere Form führt dazu, dass es an bestimmten Stellen starke Feldüberhöhungen gibt, die die Einkopplung noch verstärken. „Es ist diese spezifische Kombination von Halbleitermaterial und Gold-Nanostrukturen, die die extrem große nichtlineare Reaktion produziert“ sagt Frederic Demmerle.

Terahertz-Strahlung

In Zukunft wollen die Physiker nach diesem Muster weitere Materialien für andere nicht-lineare Effekte entwickeln. „Denkbar ist neben der Frequenzverdopplung auch die Frequenzhalbierung sowie die Erzeugung von Summen- oder Differenzfrequenzen“, sagt Jongwon Lee, Forscher an der University of Texas und Erstautor der Publikation. „Mit solchen Bausteinen ließe sich dann beispielsweise Terahertz-Strahlung erzeugen und detektieren. Auf diese Strahlung setzt die Medizin, weil sie biologisches Gewebe nicht schädigt.“

„Indem sie außergewöhnliche elektromagnetische Wechselwirkungen und die Quantenphysik von Metamaterialien miteinander verknüpft, eröffnet diese Arbeit ein völlig neues Forschungsfeld im Bereich der nichtlinearen Optik“, sagt Professorin Andrea Alu.

„Weil sie nicht mehr dem Zwang zur Anpassung der Phasengeschwindigkeit unterliegen, eröffnen die in dieser Arbeit entwickelten ultradünnen nichtlinearen optischen Elementen neue Wege zu effizienten Bausteinen für die Frequenzkonversion“, sagt Professor Mikhail Belkin.

Die Arbeit der Forschungsgruppe der University of Texas wurde gefördert von der National Science Foundation der USA, der US Air Force (Office of Scientific Research), des US Office of Naval Research. Die Arbeiten im Walter Schottky Institut wurden von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative (Cluster of Excellence Nanosystems Initiative Munich, NIM) gefördert.

Publikation
Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions
Jongwon Lee, Mykhailo Tymchenko, Christos Argyropoulos, Pai-Yen Chen, Feng Lu, Frederic Demmerle, Gerhard Boehm, Markus-Christian Amann, Andrea Alù, and Mikhail A. Belkin, Nature, 03.07.2014, DOI: 10.1038/nature13455

Kontakt:
Prof. Dr. Markus C. Amann
Technische Universität München
Walter Schottky Institut
Am Coulombwall 4, 85748 Garching, Germany
Tel.: +49 89 289 11580 – E-Mail: markus-christian.amann@tum.de
Internet: http://www.wsi.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen