Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hoch statt flach: Nanodrähte für eine neue Chip-Architektur

18.01.2010
Silizium ist das gängige Material in der Elektronik, egal, ob es um Handys, Solarzellen oder Computer geht. Drähte aus Silizium im Nanometer-Bereich haben ein großes Potential für eine völlig neue Chip-Architektur, doch muss man zuvor ihre elektrischen Eigenschaften noch genauer erforschen und verstehen.

Forscher vom Max-Planck-Institut für Mikrostrukturphysik und vom Forschungszentrum Dresden-Rossendorf (FZD) gelang es, den elektrischen Widerstand und den bislang unbekannten Stromfluss im Inneren von Silizium-Nanodrähten darzustellen. Die Ergebnisse sind in der Fachzeitschrift NANO LETTERS erschienen.

Unzählige Silizium-Transistoren sind auf einem heutigen Mikrochip dafür verantwortlich, Informationen weiterzugeben. Die Transistoren sind in der Ebene, also flach, angeordnet und mittlerweile nur noch rund 50 Nanometer (1 Nanometer = 1 Millionstel Millimeter) groß. Da einer weiteren Miniaturisierung Grenzen gesetzt sind, wird fieberhaft an neuen Ansätzen gearbeitet. Man stelle sich nun eine ganz neuartige, dreidimensionale Architektur vor: statt flächig oder in Schichten übereinander gestapelt, werden die Silizium-Transistoren einfach um 90 Grad gedreht und in die Höhe gebaut. So könnte man viele Transistoren, die wie winzige Säulen mit Durchmessern von jeweils nur wenigen Nanometer aus dem Mikrochip herausragen, auf der Fläche eines üblichen, flächigen Transistors unterbringen. Damit wäre der Schritt von der Mikro- zur Nanoelektronik endgültig getan.

Nanodrähte aus Kohlenstoff haben mittlerweile in der industriellen Fertigung Einzug gehalten, Drähte aus Silizium hingegen können erst seit kurzem zuverlässig hergestellt werden. Vor ihrem Einsatz müssen sie jedoch noch erforscht werden, denn nur wenn man ihre elektrischen Eigenschaften sehr gut versteht, kann man zuverlässige Transistoren für eine neue Generation von Mikrochips bauen. In solchen Säulen-Transistoren wird der Strom nicht horizontal, sondern vertikal fließen, und sie werden kleiner und energiesparender sein als heute üblich. Nicht zuletzt verspricht man sich von Silizium-Nanodrähten auch hocheffiziente Solarzellen.

Die Max-Planck-Forscher aus Halle stellen einkristalline Nanodrähte aus Silizium her, die besonders gut geeignet sind als Bauteile für Mikrochips. Im Ionenstrahlzentrum des FZD werden in die Drähte Fremdatome implantiert, ein Vorgang, der den Stromfluss im Halbleiter-Material überhaupt erst ermöglicht - und damit auch den Transistor, dessen Funktion es ist, den Strom der elektrischen Ladungsträger zu schalten. Silizium selbst ist zwar hervorragend erforscht, doch gilt dies nicht, wenn man sich auf die Nanometer-Ebene begibt. "Wir haben zunächst Drähte untersucht, die einen Durchmesser von rund 100 Nanometer haben und 300 Nanometer lang sind. Das Ziel richtet sich jedoch auf Drähte, die nur wenige Atome dick sind bis hin zu einem Draht, wo sich nur noch einzelne Atome aneinander reihen. Deren Materialverhalten wollen wir dann genau charakterisieren um herauszufinden, wie man ihre elektrischen Eigenschaften für den Einsatz in der Nanoelektronik maßschneidern kann, z.B. für neuartige Feldeffekt-Transistoren.", so der FZD-Physiker Dr. Reinhard Kögler.

Was die Wissenschaftler bisher gefunden haben: die implantierten Fremdatome - es handelt sich um für die Mikroelektronik typische Sorten wie Bor oder Phosphor - bleiben nicht an Ort und Stelle, sondern wandern zum Rand des Nanodrahtes, also zur Oberfläche hin. Dort werden sie teilweise inaktiv und können dann nicht mehr zur Leitfähigkeit beitragen. Bisher jedoch fehlte eine geeignete Messmethode, um die Auswirkungen der ungleichen Verteilung der implantierten Atome zu bestimmen. Sollen also zukünftig Nanodrähte als Säulen-Transistoren zum Einsatz kommen, so müssen die Entwickler diese - und weitere - Erkenntnisse sorgfältig berücksichtigen.

Die Nanodrähte wurden in Rossendorf mit einer speziell hierfür abgewandelten Untersuchungsmethode (Scanning Spreading Resistance Microscopy, SSRM) untersucht. Diese Methode erlaubt es zugleich, während der Messungen die Nanodrähte der Länge nach Schicht für Schicht abzutragen und so quasi dreidimensionale Messungen durchzuführen. So erhalten die Wissenschaftler 3D-Bilder von der Leitfähigkeit in einem Nanodraht, der am Ende nur so dick ist wie der 25.000ste Teil eines menschlichen Haares. Das ist weltweit einmalig.

Veröffentlichung
Xin Ou,?,+,§, Pratyush Das Kanungo,?, Reinhard Kögler,+, Peter Werner,?, Ulrich Gösele,?, Wolfgang Skorupa,+, Xi Wang, §, "Carrier Profiling of Individual Si Nanowires by Scanning Spreading Resistance Microscopy", in: "Nano Letters 2010,10,171-175",
DOI: 10.1021/nl903228s,
http://dc.pubs.acs.org/doi/abs/10.1021/nl903228s
?Max Planck Institute of Microstructure Physics, Halle; + Institute of Ion Beam Physics and Materials Research, FZD; §Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai
Weitere Informationen
Dr. Reinhard Kögler / Dr. Wolfgang Skorupa
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3612 / - 3613
E-Mail: w.skorupa@fzd.de / r.koegler@fzd.de
Dr. Peter Werner
Max-Planck-Institut für Mikrostrukturphysik Halle
Tel.: 0345 5582 629
E-Mail: werner@mpi-halle.mpg.de
http://www.mpi-halle.mpg.de
Pressekontakt
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400 | 01328 Dresden
Tel.: 0351 260 - 2450 | 0160 969 288 56
E-Mail: presse@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://dc.pubs.acs.org/doi/abs/10.1021/nl903228s
http://www.mpi-halle.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften