Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hoch statt flach: Nanodrähte für eine neue Chip-Architektur

18.01.2010
Silizium ist das gängige Material in der Elektronik, egal, ob es um Handys, Solarzellen oder Computer geht. Drähte aus Silizium im Nanometer-Bereich haben ein großes Potential für eine völlig neue Chip-Architektur, doch muss man zuvor ihre elektrischen Eigenschaften noch genauer erforschen und verstehen.

Forscher vom Max-Planck-Institut für Mikrostrukturphysik und vom Forschungszentrum Dresden-Rossendorf (FZD) gelang es, den elektrischen Widerstand und den bislang unbekannten Stromfluss im Inneren von Silizium-Nanodrähten darzustellen. Die Ergebnisse sind in der Fachzeitschrift NANO LETTERS erschienen.

Unzählige Silizium-Transistoren sind auf einem heutigen Mikrochip dafür verantwortlich, Informationen weiterzugeben. Die Transistoren sind in der Ebene, also flach, angeordnet und mittlerweile nur noch rund 50 Nanometer (1 Nanometer = 1 Millionstel Millimeter) groß. Da einer weiteren Miniaturisierung Grenzen gesetzt sind, wird fieberhaft an neuen Ansätzen gearbeitet. Man stelle sich nun eine ganz neuartige, dreidimensionale Architektur vor: statt flächig oder in Schichten übereinander gestapelt, werden die Silizium-Transistoren einfach um 90 Grad gedreht und in die Höhe gebaut. So könnte man viele Transistoren, die wie winzige Säulen mit Durchmessern von jeweils nur wenigen Nanometer aus dem Mikrochip herausragen, auf der Fläche eines üblichen, flächigen Transistors unterbringen. Damit wäre der Schritt von der Mikro- zur Nanoelektronik endgültig getan.

Nanodrähte aus Kohlenstoff haben mittlerweile in der industriellen Fertigung Einzug gehalten, Drähte aus Silizium hingegen können erst seit kurzem zuverlässig hergestellt werden. Vor ihrem Einsatz müssen sie jedoch noch erforscht werden, denn nur wenn man ihre elektrischen Eigenschaften sehr gut versteht, kann man zuverlässige Transistoren für eine neue Generation von Mikrochips bauen. In solchen Säulen-Transistoren wird der Strom nicht horizontal, sondern vertikal fließen, und sie werden kleiner und energiesparender sein als heute üblich. Nicht zuletzt verspricht man sich von Silizium-Nanodrähten auch hocheffiziente Solarzellen.

Die Max-Planck-Forscher aus Halle stellen einkristalline Nanodrähte aus Silizium her, die besonders gut geeignet sind als Bauteile für Mikrochips. Im Ionenstrahlzentrum des FZD werden in die Drähte Fremdatome implantiert, ein Vorgang, der den Stromfluss im Halbleiter-Material überhaupt erst ermöglicht - und damit auch den Transistor, dessen Funktion es ist, den Strom der elektrischen Ladungsträger zu schalten. Silizium selbst ist zwar hervorragend erforscht, doch gilt dies nicht, wenn man sich auf die Nanometer-Ebene begibt. "Wir haben zunächst Drähte untersucht, die einen Durchmesser von rund 100 Nanometer haben und 300 Nanometer lang sind. Das Ziel richtet sich jedoch auf Drähte, die nur wenige Atome dick sind bis hin zu einem Draht, wo sich nur noch einzelne Atome aneinander reihen. Deren Materialverhalten wollen wir dann genau charakterisieren um herauszufinden, wie man ihre elektrischen Eigenschaften für den Einsatz in der Nanoelektronik maßschneidern kann, z.B. für neuartige Feldeffekt-Transistoren.", so der FZD-Physiker Dr. Reinhard Kögler.

Was die Wissenschaftler bisher gefunden haben: die implantierten Fremdatome - es handelt sich um für die Mikroelektronik typische Sorten wie Bor oder Phosphor - bleiben nicht an Ort und Stelle, sondern wandern zum Rand des Nanodrahtes, also zur Oberfläche hin. Dort werden sie teilweise inaktiv und können dann nicht mehr zur Leitfähigkeit beitragen. Bisher jedoch fehlte eine geeignete Messmethode, um die Auswirkungen der ungleichen Verteilung der implantierten Atome zu bestimmen. Sollen also zukünftig Nanodrähte als Säulen-Transistoren zum Einsatz kommen, so müssen die Entwickler diese - und weitere - Erkenntnisse sorgfältig berücksichtigen.

Die Nanodrähte wurden in Rossendorf mit einer speziell hierfür abgewandelten Untersuchungsmethode (Scanning Spreading Resistance Microscopy, SSRM) untersucht. Diese Methode erlaubt es zugleich, während der Messungen die Nanodrähte der Länge nach Schicht für Schicht abzutragen und so quasi dreidimensionale Messungen durchzuführen. So erhalten die Wissenschaftler 3D-Bilder von der Leitfähigkeit in einem Nanodraht, der am Ende nur so dick ist wie der 25.000ste Teil eines menschlichen Haares. Das ist weltweit einmalig.

Veröffentlichung
Xin Ou,?,+,§, Pratyush Das Kanungo,?, Reinhard Kögler,+, Peter Werner,?, Ulrich Gösele,?, Wolfgang Skorupa,+, Xi Wang, §, "Carrier Profiling of Individual Si Nanowires by Scanning Spreading Resistance Microscopy", in: "Nano Letters 2010,10,171-175",
DOI: 10.1021/nl903228s,
http://dc.pubs.acs.org/doi/abs/10.1021/nl903228s
?Max Planck Institute of Microstructure Physics, Halle; + Institute of Ion Beam Physics and Materials Research, FZD; §Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai
Weitere Informationen
Dr. Reinhard Kögler / Dr. Wolfgang Skorupa
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3612 / - 3613
E-Mail: w.skorupa@fzd.de / r.koegler@fzd.de
Dr. Peter Werner
Max-Planck-Institut für Mikrostrukturphysik Halle
Tel.: 0345 5582 629
E-Mail: werner@mpi-halle.mpg.de
http://www.mpi-halle.mpg.de
Pressekontakt
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400 | 01328 Dresden
Tel.: 0351 260 - 2450 | 0160 969 288 56
E-Mail: presse@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://dc.pubs.acs.org/doi/abs/10.1021/nl903228s
http://www.mpi-halle.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie