Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Hitze Daten speichern

07.02.2012
Laserpuls ändert die Magnetisierung von Speichermedien schneller und mit weniger Energie als ein externes Magnetfeld.

Ein internationales Forschungsteam hat einen neuen Weg aufgezeigt, um Daten auf magnetischen Medien zu speichern. Dabei verwenden die Forschenden kein externes Magnetfeld, sondern setzten stattdessen einen Hitzepuls ein. Konkret haben sie gezeigt, dass Nord- und Südpol eines Magneten mit Hilfe eines sehr intensiven Hitzepulses – in dem Fall erzeugt durch einen kurzen Laserblitz – vertauscht werden können.

Der Hitzepuls bringt den Magneten zunächst in einen Zustand jenseits des Gleichgewichts (das Bit ist weder „0“ noch „1“), aus dem dieser dann innerhalb von Pikosekunden (1 Pikosekunde = 0,000 000 000 001 Sekunde) in einen definierten Zustand „0“ oder „1“ findet. Diese Methode könnte die Speicherung von mehreren Tausend Gigabyte pro Sekunde erlauben. Das Verfahren wäre viele hundert mal schneller als Technologien, die in heutigen Festplatten genutzt werden und hat das Potenzial, deutlich weniger Energie zu verbrauchen.

Die am Projekt beteiligten Forschenden stammen aus Grossbritannien, Spanien, der Schweiz, der Ukraine, Russland, Japan und den Niederlanden. Mit dem Einsatz moderner lithografischer Verfahren und hochmoderner Röntgenmikrokopie haben Forschende des Paul Scherrer Instituts wesentlich zu dem Ergebnis beigetragen. Über ihre Arbeit berichten sie in der aktuellen Ausgabe des Online-Journals Nature Communications.

Die magische magnetische Kraft

Jeder, der die anziehenden und abstossenden Kräfte zwischen Magneten erfahren hat, weiss dass Magnete einen Nord- und einen Südpol haben und dass gleiche Pole einander abstossen während entgegengesetzte Pole einander anziehen. Derartige Magnete, bloss wesentlich kleiner als diejenigen, die wir aus dem Alltag kennen, werden in moderner Speichertechnologie genutzt, wie sie etwa in Computerfestplatten eingesetzt wird.
In dieser Technik werden einzelne Bits (die kleinste Informationseinheit, mit nur den zwei Werten „0“ oder „1“) in der Ausrichtung wenige Nanometer grosser Magnete gespeichert. Bislang hat man gedacht, dass man ein externes Magnetfeld braucht, um ein Bit zu speichern, also die Ausrichtung eines solchen Nanomagneten umzukehren. So nutzen moderne Festplattenlaufwerke ein magnetisches Feld von rund einem Tesla (etwa 20'000 mal die Stärke des Erdmagnetfelds), das erlaubt, ein Bit innerhalb einiger Nanosekunden (1 Nanosekunde = 0,000 000 001 Sekunde = 1000 Pikosekunden) zu speichern. Dabei ist es technologisch sehr schwierig grosse Magnetfelder schnell in einem kleinen Bereich zu schalten

Mit Hitze schneller speichern

Indem sie sich die deutlich stärkeren inneren Kräfte des magnetischen Materials zu Nutze machten, konnten die Mitglieder eines multinationalen Forschungsteams nun zeigen, wie man die Ausrichtung der Magnete ändern kann, ohne ein Magnetfeld zu verwenden. Statt eines Magnetfelds haben sie einen Hitzepuls aus einem Laser genutzt. Jeder der Nanomagnete in dem Material besteht selbst aus winzigen elementaren Magneten – den Spins, die durch die so genannte Austauschwechselwirkung miteinander gekoppelt sind. Diese innere Kraft richtet die Spins in einem Material in eine gemeinsame Richtung aus, so dass das ganze Material „magnetisch“ wird. Dabei hatte man bislang immer gedacht, dass Hitze eine solche magnetische Ordnung nur zerstören kann. Nun wurde aber deutlich, dass wenn man das Material mit einem extrem kurzen Laserblitz (0,1 Pikosekunden) aufheizt, der Nanomagnet zwar zunächst aus dem Gleichgewicht gebracht und in einen Zustand versetzt wird, der weder „0“ noch „1“ entspricht.
Dann zwingen aber die Kräfte in seinem Inneren, die durch die Austauschwechselwirkung bestimmt werden, den Magneten in einen der beiden Gleichgewichtszustände – „0“ oder „1“. „Dieses Verfahren macht es möglich, Tausende von Gigabytes pro Sekunde zu speichern – das ist viele hundert Mal mehr als mit heutigen Technologien. Und da man auch kein Magnetfeld benötigt, verbraucht man auch weniger Energie”, so Thomas Ostler von der Universität York, der mit Hilfe von Computersimulationen vorausgesagt hat, wie ein Laserblitz auf einen Magneten wirkt und dabei Erstaunliches gezeigt hat.

Lithographie und Röntgenmikroskopie am Paul Scherrer Institut
Experimentell nachgewiesen wurde der Effekt an der Universität Nijmegen mit Hilfe magneto-optischer Mikroskopie an dünnen Schichten und am Paul Scherrer Institut an mikrometergrossen Strukturen, die hier mit einem lithographischen Verfahren im Labor für Mikro und Nanotechnologie hergestellt und anschliessend mit Röntgenmikroskopie an der Synchrotron Lichtquelle Schweiz SLS des PSI untersucht wurden. „Das Synchrotronlicht, das an der SLS erzeugt wird, erlaubt uns, das Verhalten von sehr kleinen Magneten zu verfolgen. Damit konnten wir auch den Einfluss eines kurzen Laserpulses auf einzelne Magnete beobachten“, erklärt Frithjof Nolting, Leiter der Arbeitsgruppe Magnetismus und Mikroskopie am PSI. Die Forschenden sind überzeugt, dass das Verfahren die Grundlage für neue effizientere Speichertechnologien werden könnte.
Beteiligte Institutionen und Förderung

An dem Projekt waren Forschende folgender Institutionen beteiligt: Universität York; Institut für Materialforschung, Madrid, Spanien; Paul Scherrer Institut, Schweiz; Fakultät für Wissenschaft und Technologie, Nihon-Universität, Japan; Institut für Magnetismus, Kiew, Ukraine; Physikalisch-Technisches Ioffe-Institut der Russischen Akademie der Wissenschaften, Russland; Radboud- Universität Nijmegen, Institut für Moleküle und Materialien, Niederlande

Die Arbeit wurde zum Teil unterstützt von: Niederländische Organisation für wissenschaftliche Forschung, NanoSci-E+ Programm, Stiftung für Grundlagenforschung und Technologie-Stiftung, Niederlande; Russische Stiftung für Grundlagenforschung, Siebtes EU-Rahmenprogramm, das Spanische MICINN-Projekt und Europäischer Forschungsrat im Siebten EU-Rahmenprogramm.

Text: Thomas Ostler/Paul Piwnicki
Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt/Ansprechpartner
Prof. Dr. Roy Chantrell; Thomas Ostler
Department of Physics, University of York, York, YO10 5DD UK
Tel: +44 (0)1904 322253, E-Mail: roy.chantrell@york.ac.uk; tao500@york.ac.uk;
Web: http://www.york.ac.uk/physics
Dr. Alexey Kimel
Institute of Molecules and Materials (IMM), Radboud University Nijmegen, 6525 AJ
Nijmegen, Niederlande;
Tel : +31 24 3653026; E-Mail: a.kimel@science.ru.nl
Web: http://www.ru.nl/ssi/members/alexey_kimel/
Prof. Dr. Frithjof Nolting
Labor für Kondensierte Materie; Forschungsbereich Synchrotronstrahlung und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz;
Tel: +41 56 310 51 11, E-Mail: frithjof.nolting@psi.ch
Web: http://www.psi.ch/sls/sim/sim
Originalveröffentlichung:
Ultrafast Heating as a Sufficient Stimulus for Magnetization Reversal in a Ferrimagnet
T. A. Ostler, J. Barker, R. F. L. Evans, R. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afanasiev, B. A. Ivanov, A. M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, Th. Rasing and A. V. Kimel

DOI: 10.1038/ncomms1666; http://dx.doi.org/10.1038/ncomms1666 , 7 Februar 2011.

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch/sls/sim/sim

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie