Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hilfe bei der Suche nach der Nadel im Heuhaufen

15.10.2014

Heidelberger Physiker machen Methode zum Nachweis extrem seltener Edelgas-Isotope zur Wasserdatierung nutzbar

In den Erd- und Umweltwissenschaften spielen radioaktive Isotope, also über die Zeit zerfallende Varianten von Atomen, eine große Rolle für die Altersbestimmung. So lässt sich zum Beispiel mit Hilfe eines radioaktiven Isotops des Edelgases Argon (39Ar) das Alter von Wasser oder Eis bestimmen.


Aufbau der Apparatur im Labor

© C. Kaup

Allerdings sind solche Isotope extrem selten – unter einer Billiarde Argon-Atomen findet sich nur ein einziges 39Ar. Damit gleicht für Wissenschaftler der Versuch, diese Atome abzutrennen und nachzuweisen, der sprichwörtlichen Suche nach der Nadel im Heuhaufen.

Physikern der Universität Heidelberg ist es nun gelungen, eine im Rahmen von Grundlagenforschung entwickelte experimentelle Methode erstmals für die Grundwasserdatierung mittels 39Ar nutzbar zu machen. Diese Forschungsergebnisse, die im geowissenschaftlichen Journal „Geophysical Research Letters“ veröffentlicht wurden, eröffnen nach Angaben der Wissenschaftler neue Perspektiven für Untersuchungen zu Gletschereis und zur Tiefenwasserzirkulation im Ozean.

Das bekannteste Beispiel für Altersbestimmung mit radioaktiven Isotopen ist der Radiokohlenstoff, der sich zur Datierung von organischem Material in der Umwelt, aber auch in archäologischen Fundstücken eignet. In ähnlicher Weise kann aus der Häufigkeit radioaktiver Isotope der Edelgase Argon und Krypton bestimmt werden, wann sich beispielsweise Grundwasser, Tiefenwasser im Ozean oder Gletschereis gebildet hat.

Zum Abtrennen und Nachweisen der seltenen Atome aus dem Wasser kommen innovative experimentelle Methoden zum Einsatz, die im Rahmen der Grundlagenforschung zu quantenmechanischen Systemen entwickelt und perfektioniert wurden. Die Wissenschaftler des Kirchhoff-Instituts für Physik und des Instituts für Umweltphysik der Universität Heidelberg konnten nun die unter dem Begriff „Atom Trap Trace Analysis“ oder kurz ATTA bekannte Methode erstmals für die Grundwasserdatierung mit Hilfe von 39Ar anwenden.

Mitarbeiter der Arbeitsgruppe von Prof. Dr. Werner Aeschbach-Hertig in der Umweltphysik trennten dazu zunächst aus mehr als 1.000 Litern Grundwasser reines Argon ab. In einer eigens dafür entwickelten ATTA-Apparatur „fing“ das Team von Prof. Dr. Markus Oberthaler am Kirchhoff-Institut die 39Ar-Atome ein und wies sie einzeln nach. Dieser Erfolg einer jahrelangen gemeinsamen Entwicklungsarbeit öffnet nun die Tür für eine Vielzahl neuer Anwendungen der 39Ar-Datierung, wie die Wissenschaftler betonen.

„Das Projekt ist ein hervorragendes Beispiel dafür, dass Methoden, die in der Grundlagenforschung zu quantenmechanischen Eigenschaften entwickelt wurden, auch neue Möglichkeiten in der Anwendung bieten“, erklärt Prof. Oberthaler. Der Erstautor der Studie, Dr. Florian Ritterbusch, ist davon überzeugt, dass weitere Verbesserungen der Messmethode möglich sind:

„Im Prinzip sollte ein Liter Wasser für eine Messung genügen.“ Diese Fortschritte sollen bald die ersten Messungen von 39Ar an Gletschereis aus den Alpen ermöglichen. Das größte Potenzial bietet 39Ar nach Angaben der Forscher aber für die Untersuchung der Tiefenwasserzirkulation im Ozean. „Dazu müssen wir in der Lage sein, Proben von weniger als zehn Liter Wasser mit ausreichender Genauigkeit messen zu können“, meint Prof. Aeschbach-Hertig.

Die Pioniere der neuen Messmethode vom US-amerikanischen Argonne National Laboratory organisierten 2012 in Chicago einen speziellen ATTA-Workshop, um die möglichen Anwendungen von Krypton-Isotopen in den Erd- und Umweltwissenschaften zu diskutieren. Im März 2015 wird die Heidelberger ATTA-Kollaboration eine Neuauflage dieses Treffens organisieren.

Durch die in Heidelberg erzielten Fortschritte bei der Arbeit mit 39Ar hat sich das Spektrum der Anwendungsmöglichkeiten nochmals deutlich vergrößert, wie die Wissenschaftler betonen. „Die neue Methode stellt damit auch eine innovative Erweiterung der in Heidelberg vorhandenen und im Heidelberg Center for the Environment gebündelten starken Kompetenz in Isotopen- und Datierungsmethoden dar“, sagt Prof. Aeschbach-Hertig.

Markus Oberthaler leitet am Kirchhoff-Institut für Physik die Arbeitsgruppe Synthetische Quantensysteme. Werner Aeschbach-Hertig ist Leiter der Gruppe Aquatische Systeme am Institut für Umweltphysik und zugleich Direktor des Heidelberg Center for the Environment (HCE).

Originalpublikation:
F. Ritterbusch, S. Ebser, J. Welte, T. Reichel, A. Kersting, R. Purtschert, W. Aeschbach-Hertig, M.K. Oberthaler (2014). Groundwater dating with Atom Trap Trace Analysis of 39Ar. Geophysical Research Letters 41, doi: 10.1002/2014GL061120

Informationen im Internet:
http://www.kip.uni-heidelberg.de/matterwaveoptics/research/atta
http://www.hce.uni-heidelberg.de

Kontakt:
Prof. Dr. Werner Aeschbach-Hertig
Institut für Umweltphysik
Telefon (06221) 54-6331
aeschbach@iup.uni-heidelberg.de

Prof. Dr. Markus Oberthaler
Kirchhoff-Institut für Physik
Telefon (06221) 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops