Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Higgs-Teilchen, Supersymmetrie und die dunkle Seite des Universums

09.09.2014

Woraus besteht die Welt? Warum existiert das Universum? Nach Antworten auf diese und andere grundlegende Fragen suchen Forscherinnen und Forscher aus 38 Ländern im ATLAS-Experiment am CERN, dem Europäischen Labor für Elementarteilchenforschung in Genf/Schweiz. Zu ihnen gehören Experimentelle Teilchenphysikerinnen und -physiker von der Universität Freiburg.

Zwei Freiburger Forscherinnen und ein Forscher berichten auf www.surprising-science.de  von ihrer Arbeit: Sie entwickeln neue, leistungsfähigere Teile für den ATLAS-Detektor, suchen nach supersymmetrischen Teilchen und weisen nach, dass das Higgs-Teilchen den Bausteinen der Materie Masse verleiht.


Das Modul für den zukünftigen Siliziumstreifendetektor in der Nahaufnahme: Es besteht aus einer Ausleseelektronik auf einem Siliziumsensor. Foto: Katrin Albaum

Um neue Elementarteilchen, die kleinsten Bestandteile der Welt, zu finden, lassen Forscher am CERN Materieteilchen mit riesigen Energien aufeinanderprallen. Dort befindet sich der größte und leistungsstärkste Teilchenbeschleuniger der Welt: der Große Hadronen-Speicherring oder Large Hadron Collider (LHC).

Dieser beschleunigt zwei Teilchenströme aus Protonen. Protonen gehören zur Gruppe der Hadronen. Dies sind zusammengesetzte Teilchen, die unter anderem aus Quarks bestehen. Die Ströme verlaufen in entgegengesetzte Richtungen, bis die Protonen nahezu Lichtgeschwindigkeit haben. In Detektoren, riesigen Messgeräten, kreuzen sich die Ströme.

Die aufeinander prallenden Protonen erzeugen neue Teilchen, die teilweise schnell wieder zerfallen oder vom Kollisionspunkt weg durch den Detektor fliegen. Der größte Detektor am LHC ist ATLAS: Er ist 46 Meter lang und mit einer Höhe von 25 Metern so groß wie ein zehnstöckiges Haus.

Die Abteilungen von Prof. Dr. Gregor Herten, Prof. Dr. Karl Jakobs und Prof. Dr. Markus Schumacher am Physikalischen Institut der Universität Freiburg sind Teil der ATLAS-Kollaboration.

Die Forscher der drei Arbeitsgruppen entwickeln den riesigen Detektor weiter, machen ihn für die Zukunft noch leistungsfähiger, stellen Computer-Ressourcen bereit und werten die Daten aus, die sie bei den Kollisionen im ATLAS-Detektor gewinnen.

Lesen Sie auf www.pr.uni-freiburg.de/go/elementarteilchen/  mehr über

Spurensuche im schalenförmigen ATLAS-Detektor
Kleine Scheiben zum Nachweis von Myonen
Sonnencreme für den ATLAS-Detektor
Dunkle Materie und offene Fragen
Suche nach supersymmetrischen Teilchen
Die Natur des Higgs-Teilchens
Materie und Antimaterie
Wie Materie ihre Masse erhält
Riesige Datenmengen

Hier finden Sie auch Videonterviews mit Forscherinnen und Forschern sowie Bildergalerien.
www.pr.uni-freiburg.de/go/elementarteilchen/

Kontakt:

Surprising Science
Mathilde Bessert-Nettelbeck
Redaktion und Projektkoordination

Albert-Ludwigs-Universität Freiburg
Stabsstelle Öffentlichkeitsarbeit und Beziehungsmanagement
Tel. 0761 / 203 - 8909
mathilde.bessert-nettelbeck@pr.uni-freiburg.de II www.surprising-science.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/go/elementarteilchen/

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten