Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Higgs-Anregungen am absoluten Temperaturnullpunkt

26.07.2012
Wissenschaftlerteam von MPQ, LMU, Harvard University und dem California Institute of Technology weist erstmals ‚Higgs’-artige Anregungen in niedrigdimensionalen Systemen nach, die bei Übergängen zwischen verschiedenen Materiezuständen ultrakalter Atome auftreten.

Die in der Natur plötzlich auftretende Brechung einer Symmetrie spielt eine fundamentale Rolle in der Physik, insbesondere für die Beschreibung von Phasenübergängen, bei denen sich der Gesamtzustand eines Systems ändert. Ein Beispiel dafür ist die spontane Ausrichtung der atomaren Magnete in einem Ferromagneten, der unter die Curie-Temperatur abgekühlt wird.


Abbildung: Illustration einer Higgs-Anregung in einem zweidimensionalen System: Die Dynamik der Higgs-Anregung (roter Bogen) kann als Schwingung in einem Potential beschrieben werden, das die Form eines mexikanischen Sombreros hat.
Grafik: MPQ, Abt. Quanten Vielteilchensysteme

In einer solchen „globalen Ordnung“ kann ein System zu kollektiven Schwingungen angeregt werden, bei denen sich die einzelnen Teilchen koordiniert zusammen bewegen. Folgt diese kollektive Bewegung den Gesetzen der Relativitätstheorie, dann kann ein besonderer Schwingungszustand entstehen, eine (nach dem britischen Physiker Peter Higgs benannte) Higgs-Anregung. Eine solche Anregung spielt z.B. eine Schlüsselrolle im Standardmodell der Elementarteilchenphysik, wo sie Higgs-Teilchen genannt wird. Auch in festkörperähnlichen Systemen können Higgs-Anregungen entstehen, wenn die kollektive Bewegung der Teilchen einem Gesetz folgt, das der Relativitätstheorie ähnelt.

Der experimentelle Nachweis kann sich allerdings auch hier als schwierig erweisen, da Higgs-Anregungen in Festkörpern – wie auch in der Elementarteilchenphysik – meist nach kurzer Zeit zerfallen. Als besonders kurzlebig erweisen sich Higgs-Anregungen in extrem flachen, sogenannten niedrigdimensionalen Systemen, und es war bisher umstritten, ob sie in diesen Systemen überhaupt beobachtbar sind. Ein Physikerteam aus der Abteilung Quanten-Vielteilchensysteme von Prof. Immanuel Bloch am Max-Planck-Institut für Quantenoptik (Garching bei München) konnte jetzt, in enger Zusammenarbeit mit Theoretikern der Harvard University (Cambridge, USA) and des California Institute of Technology (Pasadena, USA), Higgs-Anregungen in einem zweidimensionalen Vielteilchensystem nachweisen, das sich in der Nähe eines Phasenübergangs befindet und dort relativistisch beschreiben lässt (Nature, 26. Juli 2012). „Das spannende an unserem Ergebnis ist, dass wir Phänomene, die sonst nur bei höchsten Energien auftreten, auch in der Nähe des Temperaturnullpunkts wiederfinden“, verrät Immanuel Bloch.

Das Experiment beginnt damit, Rubidiumatome auf Temperaturen in der Nähe des absoluten Nullpunkts abzukühlen. Die ultrakalten Atome werden dann in ein zweidimensionales optisches Gitter geladen, eine schachbrettartige Anordnung heller und dunkler Gebiete, die durch die Kreuzung stehender Laserwellen erzeugt wird. Mit Hilfe dieses periodischen Lichtfeldes lassen sich verschiedene Quantenphasen realisieren.

In optischen Gittern sehr hoher Intensität (d.h. sehr starkem Hell-Dunkel-Kontrast) bildet sich ein hoch geordneter Zustand aus, ein sogenannter „Mott-Isolator“ (benannt nach dem britischen Physiker Sir Neville Mott), bei dem sich auf jedem Gitterplatz genau ein Atom befindet und dort fixiert ist. Wird die Gitterintensität immer weiter erniedrigt, so wird schließlich ein Phasenübergang zu einem suprafluiden Zustand überschritten. In diesem Zustand sind alle Atome Teil eines einzigen Feldes, das sich über das ganze Gitter ausdehnt und die kollektive Bewegung des Systems als eine einzige große quantenmechanische Welle beschreibt. Das Besondere ist hier, dass die Dynamik dieses Quantenfeldes den Gesetzen einer effektiven Relativitätstheorie gehorcht, bei der die Lichtgeschwindigkeit durch die Schallgeschwindigkeit ersetzt ist. Wird nun das Quantenfeld gezielt in seinem Gleichgewichtszustand gestört, können sich kollektive Schwingungszustände in Form von Higgs-Moden bilden.

Die Frage ist nun: kann sich diese Art der kollektiven Anregung auch in einem zweidimensionalen System entwickeln, und wenn ja, wie lässt sie sich nachweisen? Die Wissenschaftler stellen dazu die Systemparameter so ein, dass sich das Quantengas sehr dicht am Übergang vom Suprafluid zum Mott-Isolator befindet. Anschließend wird die Gitterintensität einige Millisekunden lang vorsichtig moduliert. Diese Modulation führt zur Erzeugung von wenigen Higgs-Anregungen, ohne das System zu sehr aus dem Gleichgewicht zu bringen. „Wir halten das „Schütteln“ bewusst sehr gering, um unerwünschte Nebeneffekte zu vermeiden. Nur so ist es möglich, das Signal der Higgs-Anregungen heraus zu filtern“, meint Manuel Endres, der an dem Experiment im Rahmen seiner Doktorarbeit forscht. „Mit einer besonders empfindlichen Methode, die wir in unserer Gruppe entwickelt haben, können wir die Temperatur des Quantensystems extrem genau, bis auf ein Milliardstel Kelvin messen. Bei bestimmten Modulationsfrequenzen konnten wir eine kleine „Spitze“ im Temperaturverlauf feststellen.“

Diese Ergebnisse deuten die Physiker so: Stimmt die Frequenz, mit der die Gitterintensität moduliert wird, mit der Frequenz einer Higgs-Mode überein, dann kommt es zu einer resonanten Schwingungsanregung, d.h. es werden verstärkt Higgs-Anregungen gebildet und Energie in das System übertragen. Damit erhöht sich auch die Temperatur des Quantengases. Die Messdaten zeigen, dass sich die Schwingungsfrequenz stark erniedrigt, wenn sich das System der Mott-Phase nähert. Dies ist ein sicheres Anzeichen dafür, dass es sich tatsächlich um eine kollektive Higgs-Anregung handelt. „Wir sprechen hierbei von einer „Aufweichung“ der Mode, die typisch für den kollektiven Charakter der Anregung in der Nähe des Phasenübergangs ist“, führt Manuel Endres aus.

Unter Theoretikern war es bislang umstritten, ob eine Higgs-Anregung in einem solchen niedrigdimensionalen System überhaupt existiert und wenn ja, in welcher Form. „In anderen Worten: Wir haben ein Phänomen beobachtet, für welches eine exakte Berechnung zur Zeit nicht möglich ist. Das macht unsere Messung umso wichtiger“, so Manuel Endres. [Olivia Meyer-Streng]

Originalveröffentlichung:

Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schauß, Christian Groß, Eugene Demler, Stefan Kuhr und Immanuel Bloch
The ‘Higgs’ Amplitude Mode at the Two-Dimensional Superfluid-Mott Insulator Transition
Nature, 26. Juli, 2012

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Manuel Endres
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32905 -214
E-Mail: manuel.endres@mpq.mpg.de

Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow, U.K.
G4 0NG
Tel.: +44 141 548 3364
E-Mail: stefan.kuhr@strath.ac.uk

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie