Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Higgs-Anregungen am absoluten Temperaturnullpunkt

26.07.2012
Wissenschaftlerteam von MPQ, LMU, Harvard University und dem California Institute of Technology weist erstmals ‚Higgs’-artige Anregungen in niedrigdimensionalen Systemen nach, die bei Übergängen zwischen verschiedenen Materiezuständen ultrakalter Atome auftreten.

Die in der Natur plötzlich auftretende Brechung einer Symmetrie spielt eine fundamentale Rolle in der Physik, insbesondere für die Beschreibung von Phasenübergängen, bei denen sich der Gesamtzustand eines Systems ändert. Ein Beispiel dafür ist die spontane Ausrichtung der atomaren Magnete in einem Ferromagneten, der unter die Curie-Temperatur abgekühlt wird.


Abbildung: Illustration einer Higgs-Anregung in einem zweidimensionalen System: Die Dynamik der Higgs-Anregung (roter Bogen) kann als Schwingung in einem Potential beschrieben werden, das die Form eines mexikanischen Sombreros hat.
Grafik: MPQ, Abt. Quanten Vielteilchensysteme

In einer solchen „globalen Ordnung“ kann ein System zu kollektiven Schwingungen angeregt werden, bei denen sich die einzelnen Teilchen koordiniert zusammen bewegen. Folgt diese kollektive Bewegung den Gesetzen der Relativitätstheorie, dann kann ein besonderer Schwingungszustand entstehen, eine (nach dem britischen Physiker Peter Higgs benannte) Higgs-Anregung. Eine solche Anregung spielt z.B. eine Schlüsselrolle im Standardmodell der Elementarteilchenphysik, wo sie Higgs-Teilchen genannt wird. Auch in festkörperähnlichen Systemen können Higgs-Anregungen entstehen, wenn die kollektive Bewegung der Teilchen einem Gesetz folgt, das der Relativitätstheorie ähnelt.

Der experimentelle Nachweis kann sich allerdings auch hier als schwierig erweisen, da Higgs-Anregungen in Festkörpern – wie auch in der Elementarteilchenphysik – meist nach kurzer Zeit zerfallen. Als besonders kurzlebig erweisen sich Higgs-Anregungen in extrem flachen, sogenannten niedrigdimensionalen Systemen, und es war bisher umstritten, ob sie in diesen Systemen überhaupt beobachtbar sind. Ein Physikerteam aus der Abteilung Quanten-Vielteilchensysteme von Prof. Immanuel Bloch am Max-Planck-Institut für Quantenoptik (Garching bei München) konnte jetzt, in enger Zusammenarbeit mit Theoretikern der Harvard University (Cambridge, USA) and des California Institute of Technology (Pasadena, USA), Higgs-Anregungen in einem zweidimensionalen Vielteilchensystem nachweisen, das sich in der Nähe eines Phasenübergangs befindet und dort relativistisch beschreiben lässt (Nature, 26. Juli 2012). „Das spannende an unserem Ergebnis ist, dass wir Phänomene, die sonst nur bei höchsten Energien auftreten, auch in der Nähe des Temperaturnullpunkts wiederfinden“, verrät Immanuel Bloch.

Das Experiment beginnt damit, Rubidiumatome auf Temperaturen in der Nähe des absoluten Nullpunkts abzukühlen. Die ultrakalten Atome werden dann in ein zweidimensionales optisches Gitter geladen, eine schachbrettartige Anordnung heller und dunkler Gebiete, die durch die Kreuzung stehender Laserwellen erzeugt wird. Mit Hilfe dieses periodischen Lichtfeldes lassen sich verschiedene Quantenphasen realisieren.

In optischen Gittern sehr hoher Intensität (d.h. sehr starkem Hell-Dunkel-Kontrast) bildet sich ein hoch geordneter Zustand aus, ein sogenannter „Mott-Isolator“ (benannt nach dem britischen Physiker Sir Neville Mott), bei dem sich auf jedem Gitterplatz genau ein Atom befindet und dort fixiert ist. Wird die Gitterintensität immer weiter erniedrigt, so wird schließlich ein Phasenübergang zu einem suprafluiden Zustand überschritten. In diesem Zustand sind alle Atome Teil eines einzigen Feldes, das sich über das ganze Gitter ausdehnt und die kollektive Bewegung des Systems als eine einzige große quantenmechanische Welle beschreibt. Das Besondere ist hier, dass die Dynamik dieses Quantenfeldes den Gesetzen einer effektiven Relativitätstheorie gehorcht, bei der die Lichtgeschwindigkeit durch die Schallgeschwindigkeit ersetzt ist. Wird nun das Quantenfeld gezielt in seinem Gleichgewichtszustand gestört, können sich kollektive Schwingungszustände in Form von Higgs-Moden bilden.

Die Frage ist nun: kann sich diese Art der kollektiven Anregung auch in einem zweidimensionalen System entwickeln, und wenn ja, wie lässt sie sich nachweisen? Die Wissenschaftler stellen dazu die Systemparameter so ein, dass sich das Quantengas sehr dicht am Übergang vom Suprafluid zum Mott-Isolator befindet. Anschließend wird die Gitterintensität einige Millisekunden lang vorsichtig moduliert. Diese Modulation führt zur Erzeugung von wenigen Higgs-Anregungen, ohne das System zu sehr aus dem Gleichgewicht zu bringen. „Wir halten das „Schütteln“ bewusst sehr gering, um unerwünschte Nebeneffekte zu vermeiden. Nur so ist es möglich, das Signal der Higgs-Anregungen heraus zu filtern“, meint Manuel Endres, der an dem Experiment im Rahmen seiner Doktorarbeit forscht. „Mit einer besonders empfindlichen Methode, die wir in unserer Gruppe entwickelt haben, können wir die Temperatur des Quantensystems extrem genau, bis auf ein Milliardstel Kelvin messen. Bei bestimmten Modulationsfrequenzen konnten wir eine kleine „Spitze“ im Temperaturverlauf feststellen.“

Diese Ergebnisse deuten die Physiker so: Stimmt die Frequenz, mit der die Gitterintensität moduliert wird, mit der Frequenz einer Higgs-Mode überein, dann kommt es zu einer resonanten Schwingungsanregung, d.h. es werden verstärkt Higgs-Anregungen gebildet und Energie in das System übertragen. Damit erhöht sich auch die Temperatur des Quantengases. Die Messdaten zeigen, dass sich die Schwingungsfrequenz stark erniedrigt, wenn sich das System der Mott-Phase nähert. Dies ist ein sicheres Anzeichen dafür, dass es sich tatsächlich um eine kollektive Higgs-Anregung handelt. „Wir sprechen hierbei von einer „Aufweichung“ der Mode, die typisch für den kollektiven Charakter der Anregung in der Nähe des Phasenübergangs ist“, führt Manuel Endres aus.

Unter Theoretikern war es bislang umstritten, ob eine Higgs-Anregung in einem solchen niedrigdimensionalen System überhaupt existiert und wenn ja, in welcher Form. „In anderen Worten: Wir haben ein Phänomen beobachtet, für welches eine exakte Berechnung zur Zeit nicht möglich ist. Das macht unsere Messung umso wichtiger“, so Manuel Endres. [Olivia Meyer-Streng]

Originalveröffentlichung:

Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schauß, Christian Groß, Eugene Demler, Stefan Kuhr und Immanuel Bloch
The ‘Higgs’ Amplitude Mode at the Two-Dimensional Superfluid-Mott Insulator Transition
Nature, 26. Juli, 2012

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Manuel Endres
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32905 -214
E-Mail: manuel.endres@mpq.mpg.de

Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow, U.K.
G4 0NG
Tel.: +44 141 548 3364
E-Mail: stefan.kuhr@strath.ac.uk

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie