Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heusler-Materialien: Goldmine für Zukunftstechnologien

08.07.2010
Neuer Quantenzustand der Materie in Heusler-Verbindungen entdeckt – Forscher aus Mainz und Stanford zeigen Wege für Spin-Elektronik, Quantencomputing und für völlig neue physikalische Effekte

Schon seit vielen Jahren sind Wissenschaftler der Johannes Gutenberg-Universität Mainz weltführend in der Forschung über Heusler-Verbindungen als wichtige Materialklasse für die Spin-Elektronik. In den letzten Jahren sind neue Anwendungsgebiete im Bereich der erneuerbaren Energien wie Solarenergie und Thermoelektrik hinzugekommen. Nun geraten die Heusler-Verbindungen auch in den Blickpunkt für Zukunftstechnologien wie den Quantencomputer.

„Wir haben aufgrund von Berechnungen einen neuen Quantenzustand der Materie in Heusler-Verbindungen entdeckt, was absolut ungeahnte Möglichkeiten für ihre Verwendung eröffnet“, teilte Univ.-Prof. Dr. Claudia Felser mit. „Heusler-Materialien sind wahre Alleskönner und eine Goldmine für Zukunftstechnologien.“ Zusammen mit Prof. Shou Cheng Zhang von der Stanford University zeigt die Mainzer Wissenschaftlerin, dass sich zahlreiche Heusler-Verbindungen wie topologische Isolatoren (TI) verhalten können. TI wurden erst vor fünf Jahren entdeckt.

Schlüsselentdeckungen in der Physik oder den Materialwissenschaften werden häufig eher zufällig bei Messungen im Labor gemacht. Im Fall der sogenannten topologischen Isolatoren war das anders. 2006 sagte Prof. Zhang aus Stanford einen neuen Quantenzustand der Materie in Nanostrukturen des bekannten Halbleiters Quecksilber-Tellurid (HgTe) voraus. Ein Jahr später wurde der Effekt von dem Würzburger Team um Laurens Molenkamp experimentell bestätigt. Um physikalisch zu verstehen, was dabei vor sich geht, werden völlig neue mathematische Konzepte benötigt.

Seit fast 5 Jahren sind die TI das Hot Topic in der Festkörper- und Materialphysik. Kennzeichnend für die topologischen Isolatoren ist, dass die Materialien eigentlich Isolatoren oder Halbleiter sind, an der Oberfläche oder an Grenzflächen sind sie allerdings metallisch, aber eben nicht wie normale Metalle. Ähnlich wie bei Supraleitern zeigen die Elektronen an der Oberfläche oder den Grenzflächen keine Wechselwirkung mit ihrer Umgebung, sie befinden sich in einem neuen Quantenzustand. Anders als in Supraleitern zeigen topologische Isolatoren zwei nichtwechselwirkende Ströme, jeweils einen für jede Spinrichtung. Der Spin ist der Eigendrehimpuls der Elektronen. Diese beiden Spinströme, die weder Defekte noch Verunreinigungen im Material wahrnehmen, können für die Zukunftselektronik „Spintronik“ und zur Informationsverarbeitung in Quantencomputern genutzt werden.

Diese Fähigkeiten werden nun auch für Heusler-Materialien vorausgesagt. Heusler-Verbindungen sind Verbindungen aus drei Elementen, die häufig halbleitend oder magnetisch sind. Schon um 1900 wurde diese Verbindungsklasse von Fritz Heusler entdeckt. Das Besondere an den Verbindungen ist, dass sie ganz andere Eigenschaften zeigen, als man aus der Kombination der Elemente, aus denen sie hergestellt werden, vermuten könnte. So wurde die erste Heusler-Verbindung aus den nichtmagnetischen Elementen Kupfer, Mangan und Aluminium hergestellt; Cu2MnAl ist aber ein Ferromagnet, sogar bei Raumtemperatur. Verbindungen aus drei guten Metallen sind plötzlich Halbleiter und für erneuerbare Energien wie Solarzellen oder für die Umwandlung von Wärme in Strom, die Thermoelektrik, interessant. Mainz ist international und auch bei potentiellen Anwendern als Standort für das Design oder die Herstellung von Heusler-Materialien bekannt. Grundlegende Erkenntnisse über Heusler-Verbindungen und ihre Eigenschaften und damit über eine etwaige Nutzung für viele künftige Anwendungen wurden in Mainz gewonnen.

Dass Heusler-Materialien nun auch als topologische Isolatoren in Frage kommen, hat weltweit für Aufregung gesorgt. „Dafür gibt es zwei Gründe“, erklärt Felser. „Zum einen gibt es in dieser großen Materialklasse mit mehr als 1000 bekannten Vertretern alleine mehr als 50 Verbindungen, die den Fingerabdruck der TI zeigen. Zum anderen können ganz neue physikalische Effekte designt werden, da die Materialien aus drei Elementen bestehen und daher neben dem topologischen Quantenzustand weitere interessante Eigenschaften aufweisen können.“ So sind Kombinationen von zwei Quantenzuständen wie Supraleitung und topologischen Oberflächenzuständen möglich. Es sind zudem noch nicht entdeckte, aber teilweise schon vorhergesagte Eigenschaften denkbar. „Es ist völlig neu, dass all diese Möglichkeiten in nur einem Material zusammenkommen“, so Felser.

Die renommierte Fachzeitschrift Nature Materials hat vor diesem Hintergrund gleich drei Artikel zu dem Thema veröffentlicht: den Artikel des Entdeckerteams aus Stanford und Mainz, eine kurze Zeit später eingereichte Arbeit aus Princeton und einen Kommentar über die sensationelle Entdeckung.

Veröffentlichung:
Stanislav Chadov, Xiaoliang Qi, Jürgen Kübler, Gerhard H. Fecher, Claudia Felser & Shou Cheng Zhang
Tunable multifunctional topological insulators in ternary Heusler compounds
Nature Materials, published online May 2010, doi:10.1038/nmat2770
Nature Materials Volume: 9, Pages: 541–545
Weitere Informationen:
Univ.-Prof. Dr. Claudia Felser
Direktorin der Graduiertenschule Materials Science in Mainz
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-26266
Fax +49 6131 39-26267
E-Mail: felser@uni-mainz.de
Weitere Informationen:
http://www.superconductivity.de/
http://www.uni-mainz.de/forschung/15958.php
http://www.nature.com/nmat/journal/v9/n7/abs/nmat2770.html (Veröffentlichung)
http://www.nature.com/nmat/journal/v9/n7/abs/nmat2783.html (Kommentar)

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften