Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herstellung computergenerierter Hologramme aus neuartigem „Meta-Material“ gelungen

15.11.2013
Prof. Dr. Thomas Zentgraf, Leiter der Arbeitsgruppe „Ultraschnelle Nanophotonik“ am Department Physik der Universität Paderborn, ist es gemeinsam mit Prof. Dr. Shuang Zhang von der Universität Birmingham gelungen, Hologramme erstmals mit einer völlig neuen Technik zu realisieren.

Für seine Hologramme verwendet er ein neuartiges Meta-Material, das mit nur 30 Nanometer (nm), also 0,00003 mm, extrem dünn ist. Zum Vergleich: Ein menschliches Haar ist etwa 2.000 Mal dicker.


Aufbau zur Erzeugung des dreidimensionalen Bildes aus dem Hologramm im Optiklabor.
Universität Paderborn, Department Physik

Computergestützt werden benötigte Strukturen berechnet und mit Methoden der modernen Nanotechnologie erzeugt. „Der Vorteil unserer Methode besteht darin, dass wir 3-D-Hologramme in HD-Qualität bei gleichzeitig weitem Gesichtsfeld erzeugen, dabei aber die Entstehung von Zwillingsbildern, die typisch bei vielen Hologrammen ist, vermeiden können“, sagt Thomas Zentgraf.

Computergenerierte Hologramme sind schnell und präzise herzustellen. „Der Computer berechnet, wie das Licht beim Durchgang durch die Fotoplatte, dem eigentlichen Hologramm, aussehen müsste und übersetzt diese Information in die Anordnung und Länge von winzigen Goldstäbchen auf dem Glasträger“, erläutert Holger Mühlenbernd, Doktorand in der Arbeitsgruppe von Thomas Zentgraf. Bei der Herstellung werden auf einem Glasträger mittels hochmoderner Elektronenstrahllithografie 100 bis 200 nm lange und 30 nm hohe Stäbchen aus Gold erzeugt. Je nachdem, wie diese Stäbchen ausgerichtet und wie lang sie sind, beeinflussen sie das auftreffende Licht wie kleine Radioantennen lokal auf der Oberfläche des Glasträgers unterschiedlich.

Beim Durchgang durch die Oberfläche wird die Lichtwelle an den Goldstäbchen verzögert, gerade so, als ob die Lichtwelle einen weiteren Weg zurücklegt hätte. Die Orientierung der Stäbchen relativ zur einfallenden Lichtwelle bestimmt dabei die Verzögerungszeit. Über die Länge der Goldstäbchen könnte zusätzlich die Intensitätsinformation, also wie stark das Licht in diesem Punkt schwingt, gesteuert werden. Wenn nun Licht auf dieses Hologramm trifft, erzeugt es aufgrund dieser Wechselwirkung ein dreidimensionales Bild im Raum, das direkt betrachtet werden kann.

„Der Einsatz des Meta-Materials in der Holographie könnte zu einer kleinen Revolution führen“, sagt Thomas Zentgraf: „Denn was jetzt noch auf einer Millimeterskala erprobt wird, kann zukünftig auch auf größere Formate übertragen werden und viele Nachteile der klassischen Holographie von Dennis Gábor beseitigen.“

Die Originalpublikation kann unter folgendem Link angesehen werden: www.physik.upb.de.

Prof. Dr. Thomas Zentgraf leitet am Department Physik der Universität Paderborn die Arbeitsgruppe „Ultraschnelle Nanophotonik“ und ist Mitglied der Zentralen Wissenschaftlichen Einrichtung „Center of Optoelectronics and Photonics Paderborn (CeOPP)“. Seine Arbeitsgruppe beschäftigt sich mit der Entwicklung von künstlichen optischen Materialien sowie neuen Konzepten zur Beeinflussung der Lichtausbreitung.

Kontakt:
Prof. Dr. Thomas Zentgraf,
Department Physik
Tel.: 05251/60-5865,
E-Mail: thomas.zentgraf@upb.de

Tibor Werner Szolnoki | idw
Weitere Informationen:
http://www.physik.upb.de
http://physik.uni-paderborn.de/ag/ag-zentgraf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops