Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herschel findet die jüngsten Protosterne

19.03.2013
Eine Gruppe von Astronomen unter der Leitung von Amelia Stutz vom Max-Planck-Institut für Astronomie in Heidelberg hat das Herschel Space-Teleskop und das Submillimeter-Teleskop APEX genutzt, um die jüngsten bislang bekannten Protosterne zu entdecken und zu charakterisieren: stellare Embryos, die tief in dichte Staub-Kokons eingebettet sind. Die Entdeckung verspricht neue Einblicke in die frühesten Stadien der Sternentwicklung, und damit auch Aufschluss über die Entstehung unseres eigenen Heimatsterns, der Sonne. Die Arbeit erscheint in der Fachzeitschrift Astrophysical Journal.

Sterne werden im Verborgenen geboren: hinter Staubschichten, tief im Inneren der Molekülwolken, aus deren Kollaps sie entstehen. Je jünger ein zukünftiger Stern (»Protostern«) ist, desto schwieriger ist es, ihn zu beobachten.


Drei der PACS Bright Red Sources (PBRS), die mit dem Weltraumteleskop Herschel gefunden wurden. Dabei dürfte es sich um einige der jüngsten bekannten Protosterne überhaupt handeln. Das Feld ganz links zeigt ein vom Weltraumteleskop Spitzer (bei 24 µm) aufgenommenes Bild, in welchem die beiden oberen Objekte vollständig unsichtbar sind, während das untere sich nicht eindeutig als Protostern identifizieren lässt. Die beiden rechten Felder zeigen Bilder vom Weltraumteleskop Herschel (bei 70 µm) und vom Submillimeterteleskop APEX (bei 350 µm), mit denen nachgewiesen werden konnte, dass es sich in der Tat um einige der jüngsten bekannten Protosterne handelt.
Bild: A. M. Stutz (MPIA)

In den letzten Jahren haben sich Astronomengruppen mit Hilfe immer höher entwickelter Infrarot-Technologie einen regelrechten Wettlauf geliefert, Protosterne in immer früheren Entwicklungsstadien zu entdecken. Jetzt hat eine Gruppe von Astronomen das Weltraumteleskop Herschel und das Submillimeter-Teleskop APEX genutzt, um die jüngsten bislang bekannten Protosterne zu entdecken und zu charakterisieren.

Einer der beteiligten Astronomen, Tom Megeath von der University of Toledo, Ohio, erinnert sich: »Die Entdeckung war ein echter Glücksfall. Ich hatte mir Bilder angesehen, die mit den Weltraum-Teleskopen Spitzer und Herschel aufgenommen wurden und einen kürzlich entdeckten interessanten Protostern in Orion zeigten, dessen Leuchtkraft sich mit der Zeit ändert. Auf dem ersten Herschel-Bild, das ich mir ansah, war dieser Protostern deutlich zu sehen – aber direkt daneben fand sich überraschender Weise noch ein weiteres Objekt, das auf den Bildern des Spitzer-Teleskops schlichtweg fehlte.«

Dass das Objekt auf den Spitzer-Bildern nicht zu sehen war, hängt damit zusammen, dass Spitzer bei kürzeren Wellenlängen beobachtet als Herschel. Dass ein Objekt bei längeren Wellenlängen hell leuchtet, bei kürzeren dagegen unsichtbar ist, gibt Physikern Hinweise auf seine Temperatur. Menschen zum Beispiel emittieren durch ihre Körpertemperatur von etwa 37 °C infrarotes, aber kein sichtbares Licht. Die Unsichtbarkeit auf den Spitzer-Bildern legte nahe, dass es sich bei dem Objekt auf dem Herschel-Bild um einen außergewöhnlich kalten Protostern handeln könnte. Das waren aufregende Aussichten, denn bei so geringen Temperaturen müsste es sich um einen Protostern in einem viel früheren Entwicklungsstadium handeln, als es jemals zuvor beobachtet worden war.

Nach dieser ersten vielversprechenden Entdeckung durchkämmte Stutz sorgfältig die Orion-Daten, um zu sehen, ob sich weitere Exemplare solcher Objekte aufspüren ließen. Am Ende kam sie auf insgesamt 55 solcher anscheinend sehr kalten Objekte.

Aber das Universum hat einen zusätzlichen Trick auf Lager. Sehr weit entfernte kosmische Objekte erscheinen »rotverschoben« – aufgrund der kosmischen Expansion werden die Wellenlängen ihres Lichtes gestreckt. Das kann dazu führen, dass eine sehr weit entfernte gewöhnliche Galaxie so ähnlich aussieht wie ein sehr kalter, aber ungleich näherer Protostern. Stutz erklärt: »Wir mussten die Spreu vom Weizen trennen und die echten Protosterne ausfindig machen. Und wir wussten, dass dies nur mit mehr Daten möglich war. Aus diesem Grund griffen wir auf APEX zurück – ein Teleskop, das sogar noch langwelligeres Licht empfängt als Herschel.« Die APEX-Antenne befindet sich in der Atacama-Wüste in Chile und wird von der Europäischen Südsternwarte (ESO) betrieben.

Mit den kombinierten Daten und durch sorgfältigen Vergleich ihrer Beobachtungen mit physikalischen Modellen von Protosternen und ähnlichen Objekten reduzierten Stutz und ihre Kollegen ihre Liste auf 15 zuverlässig identifizierte neue Protosterne. Die rötesten Quellen tauften sie nach dem Herschel-Instrument PACS, mit dem diese Entdeckungen gelungen waren, »PACS Bright Red Sources« (kurz PBRS). Diese Quellen waren aufgrund ihrer geringen Temperatur vom Spitzer-Teleskop nicht als Protosterne zu identifizieren gewesen – einige von ihnen sind auf den Spitzer-Bildern einfach unsichtbar.

Den Analysen von Stutz und ihren Kollegen nach sind dies die jüngsten Protosterne, die bislang beobachtet wurden: staubige Gashüllen mit Massen zwischen 0,2- bis 2-Mal der Sonnenmasse, die von einem tief im Inneren eingebetteten Protostern auf etwa 20 °C über dem absoluten Nullpunkt (20 K) aufgeheizt werden.

Stutz sagt dazu: »In den frühesten Stadien sammelt der Protostern den Großteil seiner Masse an. Aber diese Stadien sind gleichzeitig am schwierigsten zu beobachten. Bislang konnten die Theoretiker die Vorhersagen ihrer Sternentstehungsmodelle ein Modell über Sternentstehung aufstellte, gab es keinen direkten Weg, das, was das Modell über die frühesten Stadien sagte, mit Beobachtungen zu vergleichen. Diese Lücke schließen wir jetzt – und das ist immer eine gute Sache, wenn man wissen möchte, was wirklich vor sich geht.«

Die Astronomengruppe um Stutz hat bereits die nächsten Schritte eingeleitet. Das sind zum einen Nachfolgebeobachtungen mit Herschel an acht der PBRS, um nach Spuren von Gas-Ausflüssen zu suchen, die für diese frühen Prototypen vorhergesagt wurden. Zum anderen wollen sie mit dem Green-Bank-Radioteleskop Licht bei Wellenlängen empfangen, die für dichtere Ansammlungen von Gasmolekülen charakteristisch sind. Zusätzlich hoffen die Astronomen auf Beobachtungszeit an ALMA, dem Netz aus Submillimeter-Antennen, das sich zur Zeit noch in der Atacama-Wüste im Aufbau befindet: ALMA sollte in der Lage sein, feinere Details der Hüllen darzustellen und genauere Messungen ihrer Dichte zulassen.

Stutz fasst zusammen: »Es ist immer aufregend, neue Arten von Objekten wie unsere PBRS zu finden – insbesondere dann, wenn sie Informationen über etwas so Fundamentales wie die Geburt von Sternen versprechen. Sowohl unsere Entdeckung als auch das Potential für weitergehende Beobachtungen zeigt, dass dies interessante Zeiten für Astronomen sind. Diese Quellen konnten wir nur mit Herschel entdecken. Und nur mit ALMA ist es möglich, sie im Detail zu untersuchen.«

Kontakt

Amelia Stutz (Erstautorin)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 412
E-Mail: stutz@mpia.de
Axel M. Quetz (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 158
E-Mail: pr@mpia.de

Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2013/PR_2013_03/PR_2013_03_de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise