Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helle Röntgenblitze aus dem Laserlabor

08.06.2012
An der TU Wien gelang es einem internationalen Forschungsteam, eine ganz besondere Art von heller, kohärenter Röntgenstrahlung herzustellen. Die neue Technologie wurde nun im Magazin „Science“ präsentiert.

Ein Durchbruch in der Laserforschung gelang an der Technischen Universität Wien: In den Labors des Instituts für Photonik wurde eine Methode entwickelt, helle Laserpulse im Röntgenbereich zu erzeugen. Die dadurch gewonnene Röntgenstrahlung deckt einen breiten Energiebereich ab und eignen sich daher bestens für viele verschiedene Anwendungen – von der Materialwissenschaft bis zur Medizin.

Ähnliche Arten von Strahlung konnten bisher nur in großen Teilchenbeschleunigern (Synchrotrons) hergestellt werden, nun ist das auch im Laserlabor möglich. Die neue Technologie wurde nun in der aktuellen Ausgabe des Magazins „Science“ vorgestellt.

Laserlicht: Lichtteilchen, die im gleichen Takt schwingen

Laserstrahlung zeichnet sich dadurch aus, dass viele Photonen einer Lichtwelle gemeinsam im Takt schwingen – Wellenberg auf Wellenberg und Wellental auf Wellental – man spricht von „kohärenter Strahlung“. Das kohärente Licht, das nun in den Labors der Arbeitsgruppe von Professor Andrius Baltuska (Institut für Photonik, TU Wien) erzeugt wurde, hat ganz besondere Eigenschaften: Es setzt sich aus Photonen unterschiedlicher Energie zusammen – bis hin zu Röntgenstrahlung mit sehr kurzer Wellenlänge und hoher Energie.

Infrarot-Laser regt Atome zum Röntgen-Leuchten an

Als Energiequelle für diese Strahlung dienen kurze infrarot-Laserpulse. Sie werden auf ein Edelgas geschossen, wo sie einzelnen Atomen ein Elektron entreißen. Diese Elektronen werden vom Infrarot-Licht beschleunigt und kehren dann mit erhöhter Energie zu ihrem Atom zurück, wo sie ihre Bewegungsenergie in Form von Röntgenstrahlung abgeben. So werden langwellige Infrarot-Photonen in kurzwellige Röntgen-Photonen umgewandelt. Wenn im ganzen Gasbehälter die Atome diesen Tanz mit ihren Elektronen genau im richtigen Takt aufführen und sich die einzelnen Röntgen-Wellen perfekt addieren, dann entsteht Laser-artige Röntgenstrahlung. Beteiligt an diesem spektakulären Experiment waren Forschungsgruppen der TU Wien, der University of Colorado, der Cornell University (beide USA) und der Universidad de Salamanca (Spanien).

5000 Photonen zu einem einzigen kombiniert

Die Idee, mehrere Photonen in ein Photon mit höherer Energie umzuwandeln, ist nicht neu: Bereits 1961 gelang es, aus zwei Photonen eines rot strahlenden Rubinlasers ein einzelnes blaues Photon zu erzeugen. Das nun in Wien durchgeführte Experiment allerdings kombiniert über 5000 Photonen niederer Energie zu einem extrem hochenergetischen Röntgen-Photon.

100 Gigawatt Leistung

Die Infrarot-Photonen haben zwar wenig Energie, aber man benötigt sehr viele von Ihnen. Die Infrarot-Strahlungsquelle muss daher sehr stark sein. Verwendet wurde ein an der TU Wien entwickelter, weltweit einzigartiger Infrarot-Laser mit einer Spitzenleistung von 100 Gigawatt. Das entspricht mehreren hundert Wasserkraftwerken – allerdings nur für die Dauer des Laserpulses, in der Größenordnung von Femtosekunden (10^-15 Sekunden). Die Forschungsgruppe von der University of Colorado steuerte das Know-How für die Erzeugung der Röntgenstrahlung im Edelgas unter hohem Druck bei. Die Theorie-Gruppen aus Cornell und Salamanca untersuchten das Phänomen durch numerische Berechnungen.

Hantieren mit unsichtbarer Strahlung

„Gemeinsam überlegten wir, wie wir die technischen Möglichkeiten unserer Arbeitsgruppen am besten kombinieren könnten – und wählten schließlich den schwierigsten Weg“, erzählt Audrius Pugzlys (TU Wien). Das Team entschied sich für Infrarotstrahlung mit einer besonders großen Wellenlänge von vier Mikrometern. Diese Strahlung ist für das Auge unsichtbar und auch mit technischen Hilfsmitteln nur schwer sichtbar zu machen. Dadurch werden die Experimente aufwändiger, allerdings sind so höhere Röntgen-Energien möglich. Der Aufwand hat sich gelohnt. „Die Röntgenstrahlung ermöglicht höchst präzise Spektroskopie, die man etwa für die Erforschung von Materialien, für die Weiterentwicklung von Elektronik oder zur Analyse von Biomolekülen einsetzen kann“, sagt Audrius Pugzlys.

Laserlabor statt Teilchenbeschleuniger

Wer heute solche Strahlung benötigt, muss auf Synchrotronstrahlung aus teuren Teilchenbeschleunigern zurückgreifen. Die neue Röntgen-Lichtquelle hingegen passt auf einen großen Labortisch. „Ein Synchrotron liefert noch immer viel mehr Photonen pro Sekunde als unser Strahl, aber es gibt viele Anwendungen, für die man auch unsere Technologie einsetzen kann“, ist Pugzlys zuversichtlich. Der Bereich der extrem hochenergetischen harten Röntgenstrahlung kann noch nicht erreicht werden, doch die Photonen des Röntgenstrahles haben eine höhere Energie als in jedem anderen lichtbetriebenen Gerät. Derzeit arbeitet das Team daran, die Laserpulse in kürzeren Zeitabständen feuern zu können, dadurch ließe sich die mittlere Strahlintensität noch deutlich erhöhen.

Rückfragehinweise:
Prof. Andrius Baltuska
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38749
andrius.baltuska@tuwien.ac.at

Dr. Audrius Pugzlys
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29. 1040 Wien
T: +43-1-58801-38720
audrius.pugzlys@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/roentgenblitze/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics