Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helle Röntgenblitze aus dem Laserlabor

08.06.2012
An der TU Wien gelang es einem internationalen Forschungsteam, eine ganz besondere Art von heller, kohärenter Röntgenstrahlung herzustellen. Die neue Technologie wurde nun im Magazin „Science“ präsentiert.

Ein Durchbruch in der Laserforschung gelang an der Technischen Universität Wien: In den Labors des Instituts für Photonik wurde eine Methode entwickelt, helle Laserpulse im Röntgenbereich zu erzeugen. Die dadurch gewonnene Röntgenstrahlung deckt einen breiten Energiebereich ab und eignen sich daher bestens für viele verschiedene Anwendungen – von der Materialwissenschaft bis zur Medizin.

Ähnliche Arten von Strahlung konnten bisher nur in großen Teilchenbeschleunigern (Synchrotrons) hergestellt werden, nun ist das auch im Laserlabor möglich. Die neue Technologie wurde nun in der aktuellen Ausgabe des Magazins „Science“ vorgestellt.

Laserlicht: Lichtteilchen, die im gleichen Takt schwingen

Laserstrahlung zeichnet sich dadurch aus, dass viele Photonen einer Lichtwelle gemeinsam im Takt schwingen – Wellenberg auf Wellenberg und Wellental auf Wellental – man spricht von „kohärenter Strahlung“. Das kohärente Licht, das nun in den Labors der Arbeitsgruppe von Professor Andrius Baltuska (Institut für Photonik, TU Wien) erzeugt wurde, hat ganz besondere Eigenschaften: Es setzt sich aus Photonen unterschiedlicher Energie zusammen – bis hin zu Röntgenstrahlung mit sehr kurzer Wellenlänge und hoher Energie.

Infrarot-Laser regt Atome zum Röntgen-Leuchten an

Als Energiequelle für diese Strahlung dienen kurze infrarot-Laserpulse. Sie werden auf ein Edelgas geschossen, wo sie einzelnen Atomen ein Elektron entreißen. Diese Elektronen werden vom Infrarot-Licht beschleunigt und kehren dann mit erhöhter Energie zu ihrem Atom zurück, wo sie ihre Bewegungsenergie in Form von Röntgenstrahlung abgeben. So werden langwellige Infrarot-Photonen in kurzwellige Röntgen-Photonen umgewandelt. Wenn im ganzen Gasbehälter die Atome diesen Tanz mit ihren Elektronen genau im richtigen Takt aufführen und sich die einzelnen Röntgen-Wellen perfekt addieren, dann entsteht Laser-artige Röntgenstrahlung. Beteiligt an diesem spektakulären Experiment waren Forschungsgruppen der TU Wien, der University of Colorado, der Cornell University (beide USA) und der Universidad de Salamanca (Spanien).

5000 Photonen zu einem einzigen kombiniert

Die Idee, mehrere Photonen in ein Photon mit höherer Energie umzuwandeln, ist nicht neu: Bereits 1961 gelang es, aus zwei Photonen eines rot strahlenden Rubinlasers ein einzelnes blaues Photon zu erzeugen. Das nun in Wien durchgeführte Experiment allerdings kombiniert über 5000 Photonen niederer Energie zu einem extrem hochenergetischen Röntgen-Photon.

100 Gigawatt Leistung

Die Infrarot-Photonen haben zwar wenig Energie, aber man benötigt sehr viele von Ihnen. Die Infrarot-Strahlungsquelle muss daher sehr stark sein. Verwendet wurde ein an der TU Wien entwickelter, weltweit einzigartiger Infrarot-Laser mit einer Spitzenleistung von 100 Gigawatt. Das entspricht mehreren hundert Wasserkraftwerken – allerdings nur für die Dauer des Laserpulses, in der Größenordnung von Femtosekunden (10^-15 Sekunden). Die Forschungsgruppe von der University of Colorado steuerte das Know-How für die Erzeugung der Röntgenstrahlung im Edelgas unter hohem Druck bei. Die Theorie-Gruppen aus Cornell und Salamanca untersuchten das Phänomen durch numerische Berechnungen.

Hantieren mit unsichtbarer Strahlung

„Gemeinsam überlegten wir, wie wir die technischen Möglichkeiten unserer Arbeitsgruppen am besten kombinieren könnten – und wählten schließlich den schwierigsten Weg“, erzählt Audrius Pugzlys (TU Wien). Das Team entschied sich für Infrarotstrahlung mit einer besonders großen Wellenlänge von vier Mikrometern. Diese Strahlung ist für das Auge unsichtbar und auch mit technischen Hilfsmitteln nur schwer sichtbar zu machen. Dadurch werden die Experimente aufwändiger, allerdings sind so höhere Röntgen-Energien möglich. Der Aufwand hat sich gelohnt. „Die Röntgenstrahlung ermöglicht höchst präzise Spektroskopie, die man etwa für die Erforschung von Materialien, für die Weiterentwicklung von Elektronik oder zur Analyse von Biomolekülen einsetzen kann“, sagt Audrius Pugzlys.

Laserlabor statt Teilchenbeschleuniger

Wer heute solche Strahlung benötigt, muss auf Synchrotronstrahlung aus teuren Teilchenbeschleunigern zurückgreifen. Die neue Röntgen-Lichtquelle hingegen passt auf einen großen Labortisch. „Ein Synchrotron liefert noch immer viel mehr Photonen pro Sekunde als unser Strahl, aber es gibt viele Anwendungen, für die man auch unsere Technologie einsetzen kann“, ist Pugzlys zuversichtlich. Der Bereich der extrem hochenergetischen harten Röntgenstrahlung kann noch nicht erreicht werden, doch die Photonen des Röntgenstrahles haben eine höhere Energie als in jedem anderen lichtbetriebenen Gerät. Derzeit arbeitet das Team daran, die Laserpulse in kürzeren Zeitabständen feuern zu können, dadurch ließe sich die mittlere Strahlintensität noch deutlich erhöhen.

Rückfragehinweise:
Prof. Andrius Baltuska
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38749
andrius.baltuska@tuwien.ac.at

Dr. Audrius Pugzlys
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29. 1040 Wien
T: +43-1-58801-38720
audrius.pugzlys@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/roentgenblitze/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit lernen und arbeiten: Rund 80 neue Nachwuchskräfte in der Friedhelm Loh Group

23.10.2017 | Unternehmensmeldung

50-jähriges Jubiläum bei der JULABO GmbH

23.10.2017 | Unternehmensmeldung

DATEV eG beauftragt tisoware

23.10.2017 | Unternehmensmeldung