Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helikopter-Lichtstrahlen als neues Werkzeug der Quantenoptik

27.05.2013
Lichtwellen schwingen im rechten Winkel zu ihrer Ausbreitungsrichtung – so lernt man es in der Schule. Doch an der TU Wien verwendet man nun longitudinal schwingendes Licht für Atom-Experimente.

Licht in Flaschen abzufüllen ist heute kein großes Problem mehr: Man schickt Laserstrahlen in eine Glasfaser – allerdings nicht so, dass sie sich entlang der Glasfaser ausbreiten, sondern so, dass sie an einer flaschenartig bauchigen Stelle um die Glasfaser herum im Kreis laufen. Etwa zehn Nanosekunden oder 30.000 Umläufe lang kann Licht auf diese Weise aufbewahrt werden - lange genug, um das Licht mit Atomen wechselwirken zu lassen, die sich in unmittelbarer Nähe der Glasfaser befinden.


Eine transversal polarisierte Welle überträgt Licht in die Glasfaser, wo sie in einem Flaschen-Resonator eingefangen wird. Atome, die sich außen an der Faser anlagern (blau) koppeln dann an die Welle. TU Wien


In einer Glasfaser - etwa halb so dick wie ein menschliches Haar - läuft Licht auf einer Spiralbahn um deren Achse. Dabei kann das Licht entlang der Glasfaser nicht entkommen, weil deren Durchmesser zu beiden Seiten abnimmt. So wird das Licht gefangen und bleibt für eine Zeit gespeichert. TU Wien

An der TU Wien konnte man nun zeigen, dass auf diese Weise Licht und Materie deutlich stärker aneinander gekoppelt werden können als bisher angenommen. Der Grund dafür liegt in einer ungewöhnlichen Eigenschaft, die das Licht in solchen Flaschen-Resonatoren zeigt: Es schwingt in longitudinaler Richtung.

Propellerflugzeug oder Helikopter?

Lichtwellen können in einer bestimmten Ebene schwingen, sie können sich auch schraubenartig drehen, doch bei Lichtwellen, die sich eben und geradlinig ausbreiten ist diese Schwingung – man spricht auch von der Polarisation – immer transversal, also senkrecht zur Ausbreitungsrichtung. „Man kann sich das vorstellen wie einen Flugzeugpropeller – er dreht sich und steht dabei immer senkrecht zur Flugrichtung“, erklärt Prof. Arno Rauschenbeutel (Vienna Center for Quantum Science and Technology, Atominstitut der TU Wien). „Licht, das in unserem Mikroresonator eingesperrt ist, hat aber auch eine longitudinale Schwingungskomponente, also in Ausbreitungsrichtung. Die Lichtwelle verhält sich dann so wie der Rotor eines vorwärts fliegenden Helikopters.“ Während sich ein Punkt auf dem Flugzeugpropeller in einer Schraubenlinie fortbewegt, beschreibt ein Punkt auf dem Helikopter-Rotor eine kompliziertere geometrische Bahn – eine sogenannte Zykloide.

Wellen-Überlagerungen

Für das Verhalten der Lichtwelle hat die Schwingungsrichtung eine große Bedeutung. Entlang des Umfangs der Glasfaser kann das Licht nämlich in zwei Richtungen laufen – mit dem Uhrzeigersinn und gegen den Uhrzeigersinn. Wenn sich auf diese Weise zwei transversal schwingende Lichtwellen überlagern, so werden sie sich an manchen Stellen verstärken und an anderen auslöschen. Diese destruktive Interferenz limitiert die Stärke, mit der die Lichtwellen an ein Atom außerhalb der Glasfaser gekoppelt werden können.

Schwingen die Lichtwellen allerdings auch in Ausbreitungsrichtung, dann unterscheidet sich der Schwingungszustand der Welle, die im Uhrzeigersinn läuft von dem der gegenläufigen Welle.
In diesem Fall ist eine vollständige Auslöschung der gegenläufigen Lichtwellen durch destruktive Interferenz unmöglich. „Das war zunächst für uns sehr überraschend: Dass Licht auch longitudinal schwingen kann, ist zwar grundsätzlich nichts fundamental Neues – aber im Zusammenhang mit der Kopplung von Licht und Materie in Mikroresonatoren hatte das bisher noch niemand bedacht“, erklärt Arno Rauschenbeutel.

Kopplung von Licht und Materie

Die Ergebnisse aus den Quanten-Labors der TU Wien könnten in ganz unterschiedlichen Fachgebieten ein neues Nachdenken über longitudinal schwingendes Licht anstoßen: Sogar fokussierte Laserstrahlen im freien Raum haben eine longitudinale Schwingungs-Komponente. „Vor allem aber wissen wir jetzt, dass unsere experimentelle Methode viel besser funktioniert als erwartet“, sagt Rauschenbeutel. „Wir erzielen eine sehr starke Kopplung zwischen dem Licht in der Glasfaser und einzelnen Atomen, die sich knapp außerhalb der Glasfaser befinden.“

Einerseits eröffnet das die Möglichkeit, extrem sensitive Sensoren zu bauen, die einzelner Atome mit Licht detektieren können. Andererseits lassen sich in den Flaschen-Mikroresonatoren die quantenoptischen Grundlagen der Wechselwirkung zwischen Licht und Materie untersuchen. Und schließlich planen die Forscher, in ihrem Experiment eine Weiche für Licht zu realisieren, in der ein einzelnes Atom den Lichtstrom zwischen zwei möglichen Ausgängen umschaltet. Eine solche quantenmechanische Lichtweiche könnte dann verwendet werden, um zukünftige Quantencomputer mittels Glasfasern untereinander zu verbinden.

Rückfragehinweis:
Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-(1)-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v110/i21/e213604
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/longitudinal/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive