Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helikopter-Lichtstrahlen als neues Werkzeug der Quantenoptik

27.05.2013
Lichtwellen schwingen im rechten Winkel zu ihrer Ausbreitungsrichtung – so lernt man es in der Schule. Doch an der TU Wien verwendet man nun longitudinal schwingendes Licht für Atom-Experimente.

Licht in Flaschen abzufüllen ist heute kein großes Problem mehr: Man schickt Laserstrahlen in eine Glasfaser – allerdings nicht so, dass sie sich entlang der Glasfaser ausbreiten, sondern so, dass sie an einer flaschenartig bauchigen Stelle um die Glasfaser herum im Kreis laufen. Etwa zehn Nanosekunden oder 30.000 Umläufe lang kann Licht auf diese Weise aufbewahrt werden - lange genug, um das Licht mit Atomen wechselwirken zu lassen, die sich in unmittelbarer Nähe der Glasfaser befinden.


Eine transversal polarisierte Welle überträgt Licht in die Glasfaser, wo sie in einem Flaschen-Resonator eingefangen wird. Atome, die sich außen an der Faser anlagern (blau) koppeln dann an die Welle. TU Wien


In einer Glasfaser - etwa halb so dick wie ein menschliches Haar - läuft Licht auf einer Spiralbahn um deren Achse. Dabei kann das Licht entlang der Glasfaser nicht entkommen, weil deren Durchmesser zu beiden Seiten abnimmt. So wird das Licht gefangen und bleibt für eine Zeit gespeichert. TU Wien

An der TU Wien konnte man nun zeigen, dass auf diese Weise Licht und Materie deutlich stärker aneinander gekoppelt werden können als bisher angenommen. Der Grund dafür liegt in einer ungewöhnlichen Eigenschaft, die das Licht in solchen Flaschen-Resonatoren zeigt: Es schwingt in longitudinaler Richtung.

Propellerflugzeug oder Helikopter?

Lichtwellen können in einer bestimmten Ebene schwingen, sie können sich auch schraubenartig drehen, doch bei Lichtwellen, die sich eben und geradlinig ausbreiten ist diese Schwingung – man spricht auch von der Polarisation – immer transversal, also senkrecht zur Ausbreitungsrichtung. „Man kann sich das vorstellen wie einen Flugzeugpropeller – er dreht sich und steht dabei immer senkrecht zur Flugrichtung“, erklärt Prof. Arno Rauschenbeutel (Vienna Center for Quantum Science and Technology, Atominstitut der TU Wien). „Licht, das in unserem Mikroresonator eingesperrt ist, hat aber auch eine longitudinale Schwingungskomponente, also in Ausbreitungsrichtung. Die Lichtwelle verhält sich dann so wie der Rotor eines vorwärts fliegenden Helikopters.“ Während sich ein Punkt auf dem Flugzeugpropeller in einer Schraubenlinie fortbewegt, beschreibt ein Punkt auf dem Helikopter-Rotor eine kompliziertere geometrische Bahn – eine sogenannte Zykloide.

Wellen-Überlagerungen

Für das Verhalten der Lichtwelle hat die Schwingungsrichtung eine große Bedeutung. Entlang des Umfangs der Glasfaser kann das Licht nämlich in zwei Richtungen laufen – mit dem Uhrzeigersinn und gegen den Uhrzeigersinn. Wenn sich auf diese Weise zwei transversal schwingende Lichtwellen überlagern, so werden sie sich an manchen Stellen verstärken und an anderen auslöschen. Diese destruktive Interferenz limitiert die Stärke, mit der die Lichtwellen an ein Atom außerhalb der Glasfaser gekoppelt werden können.

Schwingen die Lichtwellen allerdings auch in Ausbreitungsrichtung, dann unterscheidet sich der Schwingungszustand der Welle, die im Uhrzeigersinn läuft von dem der gegenläufigen Welle.
In diesem Fall ist eine vollständige Auslöschung der gegenläufigen Lichtwellen durch destruktive Interferenz unmöglich. „Das war zunächst für uns sehr überraschend: Dass Licht auch longitudinal schwingen kann, ist zwar grundsätzlich nichts fundamental Neues – aber im Zusammenhang mit der Kopplung von Licht und Materie in Mikroresonatoren hatte das bisher noch niemand bedacht“, erklärt Arno Rauschenbeutel.

Kopplung von Licht und Materie

Die Ergebnisse aus den Quanten-Labors der TU Wien könnten in ganz unterschiedlichen Fachgebieten ein neues Nachdenken über longitudinal schwingendes Licht anstoßen: Sogar fokussierte Laserstrahlen im freien Raum haben eine longitudinale Schwingungs-Komponente. „Vor allem aber wissen wir jetzt, dass unsere experimentelle Methode viel besser funktioniert als erwartet“, sagt Rauschenbeutel. „Wir erzielen eine sehr starke Kopplung zwischen dem Licht in der Glasfaser und einzelnen Atomen, die sich knapp außerhalb der Glasfaser befinden.“

Einerseits eröffnet das die Möglichkeit, extrem sensitive Sensoren zu bauen, die einzelner Atome mit Licht detektieren können. Andererseits lassen sich in den Flaschen-Mikroresonatoren die quantenoptischen Grundlagen der Wechselwirkung zwischen Licht und Materie untersuchen. Und schließlich planen die Forscher, in ihrem Experiment eine Weiche für Licht zu realisieren, in der ein einzelnes Atom den Lichtstrom zwischen zwei möglichen Ausgängen umschaltet. Eine solche quantenmechanische Lichtweiche könnte dann verwendet werden, um zukünftige Quantencomputer mittels Glasfasern untereinander zu verbinden.

Rückfragehinweis:
Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-(1)-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v110/i21/e213604
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/longitudinal/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics