Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiße Elektronen in Kohlenstoff – Graphit verhält sich wie ein Halbleiter

02.03.2009
Nanomaterialien aus Kohlenstoff besitzen einzigartige Eigenschaften, die erste Anwendungen in neuen elektronischen Bauelementen und Sensoren gefunden haben.

Grundlage dieser Materialien sind atomar dünne Schichten aus regelmäßig angeordneten Kohlenstoffatomen, zum Beispiel eine einzelne ebene Schicht in sogenanntem „Graphen“ oder aufgerollte Schichten in Kohlenstoff-Nanoröhrchen.

Die Eigenschaften von Elektronen in solchen Strukturen sind verwandt mit denen in Graphitkristallen, die aus einem Stapel vieler Graphenschichten bestehen. Trotz intensiver Forschung ist das grundlegende Verhalten von Elektronen nicht vollständig verstanden und wird kontrovers diskutiert.

Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie in Berlin, Markus Breusing, Claus Ropers und Thomas Elsässer, haben jetzt das Verhalten von Elektronen in dünnen kristallinen Graphitschichten in Echtzeit untersucht. Wie sie in der Zeitschrift Physical Review Letters (Band 102, Ausgabe 08, 086809/1-4, 2009) berichten, zeichneten sie die Bewegungen der Elektronen mit einer bisher unerreichten Zeitauflösung von 10 Femtosekunden (eine Femtosekunde ist das Millionstel einer Milliardstel Sekunde) auf. Dazu regten sie Elektronen mit ultrakurzen Laserimpulsen in Zustände hoher Energie an und beobachteten ihre Rückkehr zum Gleichgewicht.

Einzelne Schritte dieses Ablaufs lassen sich zeitlich trennen und so die momentane Verteilung der Elektronen auf verschiedene Zustände bestimmen. Innerhalb von 30 Femtosekunden bilden die Elektronen ein heißes Gas mit einer extrem hohen Temperatur von 2500 °C aus, das im Kristall innerhalb von nur 500 Femtosekunden auf etwa 200 °C abkühlt. Die dabei freiwerdende Energie wird an das Kristallgitter übertragen. Danach kehren die Elektronen auf einer deutlich langsameren Zeitskala in ihre ursprünglichen Zustände zurück. Diese Untersuchungen zeigen erstmals eindeutig, dass sich Graphit auf ultrakurzen Zeitskalen wie ein Halbleiter, also etwa wie Silizium oder Galliumarsenid, und nicht wie ein Metall verhält.

Die beobachtete Dynamik der Elektronen hat einen starken Einfluss auf den elektrischen Transport, wie etwa Ströme, die bei hohen Frequenzen durch das Material fließen. Die Beobachtungen sind von grundlegender Bedeutung für künftige elektronische Bauelemente aus Kohlenstoff, die hohe elektrische Spannungen oder hohe Frequenzen verarbeiten.

Kontakt:

Markus Breusing, Prof. Thomas Elsässer, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2 A, 12489 Berlin (breusing@mbi-berlin.de, elsasser@mbi-berlin.de)

Prof. Claus Ropers, CRC Nanospektroskopie und Röntgenbildgebung, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (cropers@gwdg.de)

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie