Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiß & kalt – Gegensätze ziehen sich an

25.04.2017

Nanoteilchen werden durch Temperaturunterschiede "geladen"

Elektrisch geladene Teilchen üben starke anziehende oder abstoßende Kräfte aufeinander aus. Mit Hilfe von Computersimulationen konnten WissenschafterInnen der Universitäten Cambridge und Wien um Christoph Dellago nun nachweisen, dass selbst zwischen elektrisch neutralen Nanoteilchen ganz ähnliche Kräfte wirken, falls diese kälter oder wärmer sind als die Flüssigkeit, in der sie gelöst sind. Die aktuelle Studie erscheint im Fachmagazin PNAS.


Der Temperaturunterschied zwischen einem heißen (rot) und einem kalten (blau) Nanoteilchen führt zu einer Ausrichtung der Moleküle in der umgebenden polaren Flüssigkeit.

Copyright: Andela Šarić/Peter Wirnsberger/University of Cambridge

Körper können elektrische Ladungen tragen, die in zwei Arten vorkommen – positiv oder negativ – und die zu Kräften zwischen den Körpern führen. Dabei stoßen sich gleichartige Ladungen ab, während Ladungen mit unterschiedlichem Vorzeichen einander anziehen.

Diese sogenannten elektrostatischen Kräfte sind stark, wenn sich die Ladungen nahe sind und nehmen dann mit zunehmender Entfernung schnell ab. Elektrisch neutrale Körper üben hingegen keine elektrostatischen Kräfte aufeinander aus.

WissenschafterInnen der Universitäten Cambridge und Wien haben nun mit Hilfe von Computersimulationen gezeigt, dass in einer geeigneten Flüssigkeit gelöste Nanoteilchen dazu gebracht werden können sich so zu verhalten, als ob sie Ladungen tragen würden, selbst wenn sie elektrisch neutral sind.

Dazu genügt es, die Teilchen im Vergleich zur umgebenden Flüssigkeit aufzuheizen oder zu kühlen. Je größer der Temperaturunterschied ist, umso stärker sind auch die Kräfte, welche mit der Entfernung genauso abnehmen wie Kräfte zwischen elektrischen Ladungen. Man kann den Nanoteilchen deshalb effektive Ladungen zuweisen, deren Vorzeichen davon abhängen, ob die Teilchen gekühlt oder aufgeheizt werden.

Dieser verblüffende Effekt kann in sogenannten polaren Lösungsmitteln wie zum Beispiel Wasser auftreten. In polaren Flüssigkeiten tragen die Moleküle ein elektrisches Dipolmoment: Sie sind auf einer Seite positiv und auf der anderen Seite negativ geladen, obwohl sie insgesamt elektrisch neutral sind. Wenn nun in der polaren Flüssigkeit gelöste Nanoteilchen aufgeheizt bzw. gekühlt werden, richten sich die Flüssigkeitsmoleküle im ungleichmäßigen Temperaturfeld um die Nanoteilchen aus.

"Da in polaren Flüssigkeiten die Moleküle ein elekt-risches Dipolmoment tragen, führt die Ausrichtung der Moleküle zu einem elektrischen Feld, das identisch ist mit dem einer elektrischen Ladung und somit auch mit identischen Kräften", erklärt Christoph Dellago, Physi-ker an der Universität Wien und einer der Autoren der Studie. Interessanterweise tritt der Effekt auch für Nano-teilchen in magnetischen Flüssigkeiten auf, sodass die Teilchen in diesem Fall effektive magnetische Monopo-le tragen, die ein Analogon zu den bisher nicht beobachteten elementaren magnetischen Monopolen wären.

Ihre neuen Erkenntnisse konnten die ForscherInnen der englisch-österreichischen Kooperation dank aufwändiger Computersimulationen gewinnen, welche sie am Hochleistungsrechner Vienna Scientific Cluster (VSC) durchgeführt haben.

Mit Hilfe eines neuen Verfahrens, das Peter Wirnsberger, Absolvent der Universität Wien und nun Doktorand an der Universität Cambridge, entwickelt hat, ist es den ForscherInnen gelungen, das komplexe Nichtgleichgewichtsphänomen für ein Modellsystem aus mehr als 10.000 Molekülen zu simulieren und die von aufgeheizten oder gekühlten Nanoteilchen ausgeübten Kräfte eindeutig nachzuweisen.

Die praktische Bedeutung des entdeckten Effekts lässt sich noch nicht völlig abschätzen. "In Zukunft könnte man aber thermisch induzierte Wechselwirkungen etwa dazu verwenden, um durch kontrollierte Temperaturänderungen die Kräfte zwischen Nanoteilchen gezielt zu steuern und so die von ihnen gebildeten Strukturen zu beeinflussen", so Christoph Dellago. Bevor es aber so weit ist, warten die ForscherInnen aus Cambridge und Wien jedoch auf die experimentelle Bestätigung des von ihnen untersuchten Effekts.

Publikation in "PNAS":
Peter Wirnsberger, Domagoj Fijan, Roger A. Lightwood, Andela Šarić, Christoph Dellago, and Daan Frenkel: Numerical Evidence for Thermally Induced Monopoles, in PNAS 2017 (online ab 24.4.2017)
DOI 10.1073/pnas.162149411

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Christoph Dellago
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8
T +43-1-4277-512 60
M +43-664-602 77-512 60
christoph.dellago@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Stephan Brodicky | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Berichte zu: Computersimulationen Dipolmoment Elektrisch Moleküle Nanoteilchen PNAS Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften