Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiß & kalt – Gegensätze ziehen sich an

25.04.2017

Nanoteilchen werden durch Temperaturunterschiede "geladen"

Elektrisch geladene Teilchen üben starke anziehende oder abstoßende Kräfte aufeinander aus. Mit Hilfe von Computersimulationen konnten WissenschafterInnen der Universitäten Cambridge und Wien um Christoph Dellago nun nachweisen, dass selbst zwischen elektrisch neutralen Nanoteilchen ganz ähnliche Kräfte wirken, falls diese kälter oder wärmer sind als die Flüssigkeit, in der sie gelöst sind. Die aktuelle Studie erscheint im Fachmagazin PNAS.


Der Temperaturunterschied zwischen einem heißen (rot) und einem kalten (blau) Nanoteilchen führt zu einer Ausrichtung der Moleküle in der umgebenden polaren Flüssigkeit.

Copyright: Andela Šarić/Peter Wirnsberger/University of Cambridge

Körper können elektrische Ladungen tragen, die in zwei Arten vorkommen – positiv oder negativ – und die zu Kräften zwischen den Körpern führen. Dabei stoßen sich gleichartige Ladungen ab, während Ladungen mit unterschiedlichem Vorzeichen einander anziehen.

Diese sogenannten elektrostatischen Kräfte sind stark, wenn sich die Ladungen nahe sind und nehmen dann mit zunehmender Entfernung schnell ab. Elektrisch neutrale Körper üben hingegen keine elektrostatischen Kräfte aufeinander aus.

WissenschafterInnen der Universitäten Cambridge und Wien haben nun mit Hilfe von Computersimulationen gezeigt, dass in einer geeigneten Flüssigkeit gelöste Nanoteilchen dazu gebracht werden können sich so zu verhalten, als ob sie Ladungen tragen würden, selbst wenn sie elektrisch neutral sind.

Dazu genügt es, die Teilchen im Vergleich zur umgebenden Flüssigkeit aufzuheizen oder zu kühlen. Je größer der Temperaturunterschied ist, umso stärker sind auch die Kräfte, welche mit der Entfernung genauso abnehmen wie Kräfte zwischen elektrischen Ladungen. Man kann den Nanoteilchen deshalb effektive Ladungen zuweisen, deren Vorzeichen davon abhängen, ob die Teilchen gekühlt oder aufgeheizt werden.

Dieser verblüffende Effekt kann in sogenannten polaren Lösungsmitteln wie zum Beispiel Wasser auftreten. In polaren Flüssigkeiten tragen die Moleküle ein elektrisches Dipolmoment: Sie sind auf einer Seite positiv und auf der anderen Seite negativ geladen, obwohl sie insgesamt elektrisch neutral sind. Wenn nun in der polaren Flüssigkeit gelöste Nanoteilchen aufgeheizt bzw. gekühlt werden, richten sich die Flüssigkeitsmoleküle im ungleichmäßigen Temperaturfeld um die Nanoteilchen aus.

"Da in polaren Flüssigkeiten die Moleküle ein elekt-risches Dipolmoment tragen, führt die Ausrichtung der Moleküle zu einem elektrischen Feld, das identisch ist mit dem einer elektrischen Ladung und somit auch mit identischen Kräften", erklärt Christoph Dellago, Physi-ker an der Universität Wien und einer der Autoren der Studie. Interessanterweise tritt der Effekt auch für Nano-teilchen in magnetischen Flüssigkeiten auf, sodass die Teilchen in diesem Fall effektive magnetische Monopo-le tragen, die ein Analogon zu den bisher nicht beobachteten elementaren magnetischen Monopolen wären.

Ihre neuen Erkenntnisse konnten die ForscherInnen der englisch-österreichischen Kooperation dank aufwändiger Computersimulationen gewinnen, welche sie am Hochleistungsrechner Vienna Scientific Cluster (VSC) durchgeführt haben.

Mit Hilfe eines neuen Verfahrens, das Peter Wirnsberger, Absolvent der Universität Wien und nun Doktorand an der Universität Cambridge, entwickelt hat, ist es den ForscherInnen gelungen, das komplexe Nichtgleichgewichtsphänomen für ein Modellsystem aus mehr als 10.000 Molekülen zu simulieren und die von aufgeheizten oder gekühlten Nanoteilchen ausgeübten Kräfte eindeutig nachzuweisen.

Die praktische Bedeutung des entdeckten Effekts lässt sich noch nicht völlig abschätzen. "In Zukunft könnte man aber thermisch induzierte Wechselwirkungen etwa dazu verwenden, um durch kontrollierte Temperaturänderungen die Kräfte zwischen Nanoteilchen gezielt zu steuern und so die von ihnen gebildeten Strukturen zu beeinflussen", so Christoph Dellago. Bevor es aber so weit ist, warten die ForscherInnen aus Cambridge und Wien jedoch auf die experimentelle Bestätigung des von ihnen untersuchten Effekts.

Publikation in "PNAS":
Peter Wirnsberger, Domagoj Fijan, Roger A. Lightwood, Andela Šarić, Christoph Dellago, and Daan Frenkel: Numerical Evidence for Thermally Induced Monopoles, in PNAS 2017 (online ab 24.4.2017)
DOI 10.1073/pnas.162149411

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Christoph Dellago
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8
T +43-1-4277-512 60
M +43-664-602 77-512 60
christoph.dellago@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Stephan Brodicky | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Berichte zu: Computersimulationen Dipolmoment Elektrisch Moleküle Nanoteilchen PNAS Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften