Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System

08.12.2016

Ca. 25000 Lichtjahre entfernt kreisen zwei tote Sterne umeinander. Je 20 Kilometer Durchmesser, mehr Masse als unsere Sonne und nur fünf Stunden für eine Umkreisung. Dieses ungewöhnliche Paar wurde von einem internationalen Team unter Beteiligung von zwei MPIs (Gravitationsphysik und Radioastronomie) sowie von Teilnehmern am Computerprojekt „Einstein@Home“ aufgespürt. Bisher kennt man nur 14 solche Systeme und die Neuentdeckung hat die größte Gesamtmasse für beide Komponenten. Mit solchen Systemen werden einige der genauesten Tests von Einsteins Allgemeiner Relativitätstheorie möglich und sie spielen eine große Rolle als mögliche Quellen für den Nachweis von Gravitationswellen mit LIGO.

Neutronensterne sind Überreste von Supernova-Explosionen mit extrem hoher Dichte und extrem starken Magnetfeldern. Vergleichbar mit einem schnell rotierenden kosmischen Leuchtfeuer senden sie zwei stark gebündelte Radiostrahlen in entgegengesetzte Richtungen aus. Liegt die Erde im Bereich eines solchen Strahls, kann der Neutronenstern mit Hilfe großer Radioteleskope als pulsierende Radioquelle am Himmel – als sogenannter Pulsar - aufgespürt werden.


Der Pulsar PSR J1913+1102 wurde im Rahmen des “Einstein@Home”-Projekts auf den Computern von zwei der Teilnehmer an diesem Projekt gefunden, Uwe Tittmar (Deutschland) und Gerald Schrader (USA).

Max-Planck-Institut für Gravitationsphysik/B. Knispel (Foto), NASA (Pulsardarstellung).


Umlaufbahnen der zwei Komponenten des Doppelneutronensternsystems PSR J1913+1102. Die Größe der Sonne wird im Vergleich dazu dargestellt.

Paulo Freire, MPIfR.

Eine seltene Sorte Pulsar

Die meisten der bisher 2500 bekannten Radiopulsare am Himmel stehen isoliert und rotieren als Einzelsterne im Weltraum. Nur 255 von ihnen (gut 10%) befinden sich in Doppelsternsystemen und davon wiederum nur jeder Zwanzigste im Umlauf mit einem weiteren Neutronenstern.

„Diese seltenen Doppelneutronensternsysteme sind einzigartige Laboratorien für Fundamentalphysik; sie ermöglichen Messungen, die in keinem irdischen Laboratorium durchgeführt werden können“, sagt Bruce Allen, Direktor am Max-Planck-Institut für Gravitationsphysik in Hannover, Leiter des Einstein@Home-Projekts und Ko-Autor der im „Astrophysical Journal“ veröffentlichten Untersuchung. „Deshalb brauchen wir große Teleskope wie das Arecibo-Observatoriums und empfindliche „Datenanalyse-Maschinen“ wie Einstein@Home, um so viele wie möglich von diesen aufregenden Objekten zu entdecken.“

Entdeckung von PSR J1913+1102 in der PALFA-Pulsardurchmusterung mit Einstein@Home

Die neue Pulsarentdeckung gelang in den Daten des Arecibo-Radioteleskops. Im Rahmen von PALFA (“Pulsar Surveys with the Arecibo L-Feed Array”) führt ein internationales Forscherteam Beobachtungen mit dem Teleskop durch, um neue Radiopulsare zu identifizieren. Mit der PALFA-Durchmusterung konnten bisher 171 Pulsare entdeckt werden. Die Daten werden auch im Rahmen des Einstein@Home-Projekts auf einer Vielzahl vernetzter Computer analysiert; allein damit konnten bisher 31 neue Pulsare identifiziert werden.

Einstein@Home vereint die Computerleistung von mehr als 40.000 Nutzern weltweit, die sich mit rund 50.000 Laptops, PCs und Smartphones an dem Projekt beteiligen. Das Projekt ist eines der größten überhaupt im verteilten Rechnen auf freiwilliger Basis und seine gesamte Computerleistung von 1,7 Petaflops pro Sekunde macht es zu einem der 60 leistungsfähigsten Supercomputer weltweit.

Nach der ursprünglichen Entdeckung des Doppelsternsystems mit Einstein@Home im Februar 2012 führten die PALFA-Wissenschaftler regelmäßige Beobachtungen mit dem Arecibo-Teleskop durch, um die Umlaufbahn des Radiopulsars, der sich in jeweils 27,2 Millisekunden einmal um seine Achse dreht (das entspricht 37 Umdrehungen pro Sekunde) möglichst präzise zu vermessen. Mit diesen Beobachtungen lässt sich zeigen, dass dieses inzwischen als PSR J1913+1102 bezeichnete Objekt (im Namen stecken die Koordinaten der Position am Himmel) aus zwei Sternen besteht, die einander in etwas weniger als fünf Stunden in einem leicht elliptischen Orbit umkreisen (vgl. Abb. 2).

Aus der Verlangsamung der Rotationsperiode mit der Zeit konnten die Wissenschaftler das Magnetfeld des Pulsars berechnen, das einige Milliarden mal stärker ist als das unserer Erde. Für einen Neutronenstern ist dies ein relativ schwacher Wert, der darauf hindeutet, dass in der Vergangenheit Materie vom Begleitstern durch Akkretion aufgenommen wurde. Eine solche Akkretionsphase würde aber auch zu einer kreisförmigen Umlaufbahn führen. Die hingegen beobachtete Elliptizität des Orbits zeigt, dass auch der Begleitstern bereits als Supernova explodiert ist und einen zweiten Neutronenstern in diesem System erzeugt hat. Durch die Supernova-Explosion wurde zwar nicht das gesamte System auseinandergerissen, aber die Umlaufbahnen beider Komponenten wurden elliptischer.

Rekordverdächtiges System zeigt Einsteins Relativitätstheorie in Aktion

Die Forscher haben eine direkte Auswirkung von Einsteins Allgemeiner Relativitätstheorie in diesem Doppelsternsystem nachgewiesen. Wie die Umlaufbahn des Planeten Merkur um die Sonne rotiert auch die elliptische Umlaufbahn des Pulsars mit der Zeit. Während diese Rotation bei Merkur aber nur 0,0001 Grad pro Jahr beträgt, ist sie beim Orbit von J1913+1102 47.000 mal schneller; das sind volle 5,6 Grad pro Jahr. Das Ausmaß dieses Effekts, der relativistischen Periastron-Verschiebung, hängt von der Gesamtmasse des Systems von Radiopulsar und Begleiter ab und ermöglicht so die Berechnung dieser Masse.

„Mit insgesamt 2,88 Sonnenmassen haben wir einen neuen Rekord für die Gesamtmasse eines Systems mit zwei Neutronensternen“, sagt Dr. Paulo Freire, Wissenschaftler am Max-Planck-Institut für Radioastronomie in Bonn. „Wir würden erwarten, dass der Pulsar mehr Masse aufweist als sein Begleiter, aber mit unseren Beobachtungen konnten wir bislang die Einzelmassen von Pulsar und Begleitstern noch nicht präzise bestimmen. Aber zukünftige Messungen sollten auch das möglich machen.“
Falls der Pulsar in der Tat wesentlich massereicher sein sollte als sein Begleitstern, würde dieses System sich deutlich von allen bis jetzt bekannten Doppelneutronensternsystemen unterscheiden. In diesem Fall könnte es sich sogar als eines der besten bekannten Laboratorien zum Test von alternativen Gravitationstheorien im Vergleich zu Einsteins Allgemeiner Relativitätstheorie erweisen.

Da der Begleitstern ebenfalls ein Neutronenstern ist, könnte er im Prinzip auch als Radiopulsar nachgewiesen werden, vorausgesetzt, dass die Geometrie stimmt und der gebündelte Radiostrahl die Erde überstreicht. Das scheint allerdings für J1913+1102 nicht der Fall zu sein. Die Forscher haben die gesamten Daten sehr sorgfältig auf Radiopulse vom Begleiter hin untersucht, jedoch vergeblich. Es wurde kein Anzeichen für Radiostrahlung vom Begleitstern gefunden.

Potentielle Quellen für LIGO

Während die beiden Neutronensterne einander umkreisen, werden die Orbits kleiner und beide nähern sich einander, da das Gesamtsystem Energie durch Abstrahlung von Gravitationswellen verliert. Die Vermessung dieses Effekts sollte die Bestimmung der Einzelmassen von Pulsar und Begleitstern möglich machen. Die Forscher hoffen, dadurch auch mehr über die wenig bekannte stellare Entwicklung in solchen Doppelsternsystemen und bisher unbekannte Eigenschaften von Materie mit der Dichte eines Atomkerns zu erfahren.

Diese Entdeckungen gewinnen eine zusätzliche Bedeutung im Zeitalter der Gravitationswellenastronomie, das im September 2015 mit dem erstmaligen direkten Nachweis von Gravitationswellen mit den LIGO-Detektoren begonnen hat. „Das Aufspüren von Doppelneutronensternsystemen ähnlich wie J1913+1102 ist wichtig für die Forschung im Bereich der Gravitationswellen. Es hilft uns, besser zu verstehen, in welchem Zeitrahmen solche Systeme miteinander verschmelzen und damit herauszufinden, wie oft Signale von kollidierenden Neutronensternen in Zukunft mit Advanced LIGO entdeckt werden können“, folgert Prof. Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie.


Das Forscherteam umfasst P. Lazarus, P. C. C. Freire, B. Allen, S. Bogdanov, A. Brazier, F. Camilo, F. Cardoso, S. Chatterjee, J. M. Cordes, F. Crawford, J. S. Deneva, R. Ferdman, J. W. T. Hessels, F. A. Jenet, C. Karako-Argaman, V. M. Kaspi, B. Knispel, R. Lynch, J. van Leeuwen, E. Madsen, M. A. McLaughlin, C. Patel, S. M. Ransom, P. Scholz, A. Seymou, X. Siemens, L. G. Spitler, I. H. Stairs, K. Stovall, J. Swiggum, A. Venkataraman, W. W. Zhu. Vom MPIfR sind Patrick Lazarus, der Erstautor, sowie Paulo Freire, Laura Spitler und W.W. Zhu beteiligt.

Originalveröffentlichung:

P. Lazarus et al.: Einstein@Home Discovery of a Double Neutron Star Binary in the PALFA Survey, publiziert in: The Astrophysical Journal, Volume 831, Issue 2, article id. 150, 8 pp. (2016).

URL: http://iopscience.iop.org/article/10.3847/0004-637X/831/2/150/meta (ArXiv-Server: https://arxiv.org/abs/1608.08211)

Kontakt:

Dr. Paulo Freire,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-496
E-mail: pfreire@mpifr-bonn.mpg.de

Prof. Dr. Michael Kramer,
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525 278
E-mail: mkramer@mpifr-bonn.mpg.de

Prof. Dr. Bruce Allen,
Direktor und Leiter der Forschungsabteilung „Beobachtungsbasierte Relativität und Kosmologie“
Max-Planck-Institut für Gravitationsphysik, Hannover
Fon: +49 511 762-17145
E-mail: bruce.allen@aei.mpg.de

Dr. Benjamin Knispel
Pressekontakt
Max-Planck-Institut für Gravitationsphysik, Hannover
Fon: +49 511 762-19104
E-mail: benjamin.knispel@aei.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2016/14

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics