Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Heilige Gral der Gasplaneten

28.07.2011
Physiker der Universität Jena erhält Förderung für Forschung in Amerika

In drei Jahren wird ein etwa 3,4 Kilometer langer Tunnel Hamburg mit dem schleswig-holsteinischen Städtchen Schenefeld verbinden. Allerdings werden keine Autos darin verkehren, sondern Elektronen. Denn hier entsteht derzeit der European XFEL – der größte Röntgen-Freie-Elektronen-Laser der Welt.

Einer der Ersten, die mit der neuen Anlage arbeiten werden, ist Dr. Ulf Zastrau von der Friedrich-Schiller-Universität Jena. Denn er hat gerade den Förderbescheid über 300.000 Euro von der VolkswagenStiftung erhalten, von 2012 bis 2015 an der US-amerikanischen Stanford University zu lernen, wie man mit einem solchen Laser umgeht. Dort befindet sich der kleinere Bruder des geplanten European XFEL, die „Linac Coherent Light Source“, kurz LCLS.

Die Stiftung entschied sich dabei nicht nur für die Person, sondern auch für das Forschungsvorhaben des Wissenschaftlers. Zastrau untersucht schon seit fünf Jahren sogenannte warme dichte Materie. Diese Materie kommt im Innern der großen Gasplaneten wie Jupiter und Saturn vor, auf der Erde kann sie aber nur schwer künstlich erzeugt werden. „Leichte Elemente wie Kohlenstoff oder auch Aluminium wechseln sofort den Aggregatzustand von fest in gasförmig, wenn man ihre Temperatur auf der Erde auf mehrere zehntausend Grad erhöht“, erklärt Zastrau. „Das heißt, sie verdampfen sofort.“ Im Innern von Jupiter etwa halte der Druck von außen das Element aber zusammen.

Um warme dichte Materie auf der Erde herzustellen, haben die Forscher nur wenig Zeit. „Mit einem Freie-Elektronen-Laser kann ich ein etwa ein Kubikmillimeter großes Aluminiumobjekt erhitzen und für einige Femtosekunden im Zustand der warmen dichten Materie halten, bevor es verdampft“, erklärt der 30-jährige Physiker von der Universität Jena. „In diesem kurzen Zeitraum müssen wir allerdings auch die Experimente durchführen, um Genaueres über diesen besonderen Zustand zu erfahren.“ Ziel ist es, den „Heiligen Gral“ zu finden, wie Zastrau das nennt – nämlich die Zustandsgleichung für warme dichte Materie. Denn wenn man zwei der drei Bestandteile – Druck, Dichte und Temperatur – vorliegen hat, kann man den dritten ausrechnen.

Einerseits sind solche Experimente Grundlagenforschung für die Astrophysik der großen Planeten, braunen Zwerge und Sterne. Andererseits können die daraus gewonnenen Erkenntnisse auch für die Praxis sehr interessant sein. Denn sie könnten dabei helfen, in Zukunft effizient Energie aus der Fusion von Teilchen zu gewinnen.

Kontakt:
Dr. Ulf Zastrau
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947610
E-Mail: ulf.zastrau[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics