Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher setzt mit weltweit schnellstem Nanolichtmikroskop neuen Meilenstein

30.10.2008
Prof. Dr. Dr. Christoph Cremer durchbricht damit nach der Konzeption der 4Pi-Mikroskopie 1971 das zweite Mal in seiner Forscherkarriere die Grenze dessen, was bislang in der optischen Mikroskopie möglich war

"Sehr tief, sehr weit, in vivo und vor allem superschnell", mit diesen Schlagworten beschreibt Prof. Dr. Dr. Christoph Cremer vom Lehrstuhl für "Angewandte Optik und Informationsverarbeitung" am Kirchhoff-Institut für Physik der Universität Heidelberg die Vorteile seines optischen Nanoskops Vertico-SMI, mit dem er die molekularen Geheimnisse der Zelle entschlüsseln will. Prof. Cremer durchbricht damit nach der Konzeption der 4Pi-Mikroskopie 1971 das zweite Mal in seiner Forscherkarriere die Grenze dessen, was bislang in der optischen Mikroskopie möglich war.

Prof. Cremer, der mit seinem Stammzellforschungsprojekt im Biotechcluster "Zellbasierte & Molekulare Medizin" zu einem der fünf Sieger des deutschen Spitzencluster-Wettbewerbs gehört, leistet hiermit seinen Beitrag zur Exzellenzinitiative der Universität Heidelberg.

"Es ist die Kombination von vier entscheidenden Vorteilen, mit denen sich das Cremersche Nanoskop an die Spitze setzt: erstens die Möglichkeit, große Zellareale mit einer Auflösung von bis zu 10 Nanometern zu untersuchen, zweitens die unübertroffen hohe Aufnahme- und Bildbearbeitungsgeschwindigkeit, welche drittens die Nano-Aufnahmen ganzer lebender Zellen in 3D in Echtzeit erst ermöglicht und viertens die Möglichkeit, gängige Fluoreszenzfarbstoffe einzusetzen - alles zusammengenommen die idealen Voraussetzungen für den Routineeinsatz", so die Innovationsmanagerin Dr. Andrea Nestl von der Technologie-Lizenz-Büro (TLB) GmbH, die das Patentportfolio verwertet (Tel. 0721 7900456, www.tlb.de).

Dieses innovative patentgeschützte Verfahren mit einer sensationellen Auflösung von 10 Nanometern in 2D und 40 Nanometern in 3D hat somit das Potenzial, die gesamte molekularbiologische, medizinische und pharmazeutische Forschung zu revolutionieren und dient der Entwicklung neuer Strategien zur Vorbeugung, Risikosenkung und Therapie von Krankheiten. Mit dem Prototyp des Vertico-SMI können lebende Zellkulturen in Petrischalen mit flüssigem Medium untersucht werden. Für die richtige Gasatmosphäre sorgt die anschließbare Inkubationskammer.

Vergleichbare Nanoskopiemethoden wie die US-Entwicklungen PALM und SIM/OMX arbeiten ebenfalls mit Weitfeldmikroskopietechniken, verfügen aber nicht über diese außergewöhnliche Aufnahmegeschwindigkeit, so dass keine Aufnahmen von lebenden Zellen mit hohen Moleküldichten möglich sind. Die in Harvard entwickelte STORM-Technologie ist zwar schnell, benötigt aber einen pH-Wert, der schädlich für lebende Zellen ist. Fokussierende Nanoskopie-Methoden wie STED und ISOSTED erreichen zwar schnelle Aufnahmen in kleinen Arealen, würden allerdings für einen großen Bereich, wie er mit der Weitfeldmikroskopie erfasst werden kann, wiederum zu lange brauchen, da zuerst viele Einzelbereiche nanoskopisch erfasst werden müssten.

Das Vertico-SMI kann als einziges Nanoskop weltweit 3D-Daten ganzer lebender Zellen in zwei Minuten aufnehmen, wobei das hoch aufgelöste Bild aus mehreren tausend Einzelbildern per Computer zusammengesetzt wird.

Der mögliche Einsatzbereich eines derart schnellen, bedienungsfreundlichen und sehr stabilen optischen Nanoskops geht weit über die Grenzen der biomedizinischen Anwendungen hinaus - so ist eine Nutzung bei der Materialforschung, der Qualitätskontrolle von Nanobeschichtungen oder im Bereich der Elektronik, speziell bei Hochdurchsatzverfahren denkbar, da bereits kleinste Verformungen im 3D-Maßstab festgestellt werden können.

Pushing the limits: Als Erfinder immer vorne mit dabei

Prof. Dr. Dr. Christoph Cremer verknüpft in seiner Forscherkarriere Erkenntnisse aus den Bereichen Optische Physik und Molekularbiologie in idealer Weise miteinander. Mit dem Vertico-SMI gelang es ihm in jüngster Zeit auf sensationelle Weise, die Grenzen der optischen Auflösung zu erweitern.

Bereits 1971 hat er das erste Mal die seit 1873 geltende, vom Zeiss-Mitbegründer Ernst Abbe postulierte, optische Auflösungsgrenze durchbrochen, als er gemeinsam mit seinem Bruder Prof. Dr. med. Thomas Cremer (Ludwig-Maximilians-Universität München) die 4Pi-Mikroskopie entwickelte (DE Offenlegungsschrift 2116521).

Die Entwicklung der ersten Bestrahlungstechnik, um gezielt DNA-Schäden in überlebenden Zellen auszulösen und somit Genen, speziell in der Embryonalentwicklung, eine Funktion zuzuordnen, führte zu einer sehr fruchtbaren Zusammenarbeit mit der späteren deutschen Nobelpreisträgerin Prof. Dr. Christiane Nüsslein-Volhard.

Auch die Entwicklung des Konfokalen Laser Scanning Mikroskops (CLSM) zur Untersuchung fluoreszierender Objekte - heute in nahezu jedem molekularbiologischen Institut zu finden - geht auf die einfallsreichen Brüder zurück.

Prof. C. Cremer ist an drei laufenden Exzellenzprojekten der Universität Heidelberg beteiligt und darüber hinaus in seiner Funktion als "Adjunct"-Professor an der US-Universität Maine am Aufbau eines biophysikalischen Zentrums (Institute for Molecular Biophysics, IMB) am renommierten US-amerikanischen Jackson Laboratory beteiligt.

Ansprechpartner:
Prof. Dr. Dr. Christoph Cremer
Professor für Angewandte Optik & Informationsverarbeitung
KIP Kirchhoff-Institut für Physik & Direktor Biophysik der Genomstruktur,
Institut für Pharmazie und Molekulare Biotechnologie
Universität Heidelberg
Im Neuenheimer Feld 227
69120 Heidelberg
Tel. +49 6221 549252
(Administration Frau Dipl.-Phys. Bach: 549271), Fax +49 6221 549112
cremer@kip.uni-heidelberg.de
Ansprechpartnerin für die Verwertung:
Dr. Andrea Nestl, Innovationsmanagerin
Technologie-Lizenz-Büro (TLB) der baden-württembergischen Hochschulen GmbH
Ettlinger Straße 25
76137 Karlsruhe
Tel. +49 721 7900456, Fax +49 721 7900479
anestl@tlb.de
Bei Rückfragen von Journalisten:
Dr. Michael Schwarz
Universität Heidelberg
Pressesprecher
Grabengasse 1
69117 Heidelberg
Tel. +49 6221 542310, Fax +49 6221 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.tlb.de
http://www.uni-heidelberg.de/presse/pressestelle.html
http://www.kip.uni-heidelberg.de/AG_Cremer/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie