Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher analysieren chemische Zusammensetzung von Weltraumstaub jenseits des Sonnensystems

15.04.2016

Untersucht wurden äußerst seltene und extrem kleine Partikel, die die Sonde „Cassini“ identifiziert hat

Ein in Heidelberg konstruierter Staubdetektor auf der Raumsonde „Cassini“ – der Cosmic Dust Analyser (CDA) – hat mehrere extrem kleine und sehr seltene Partikel interstellaren Staubs aus dem Raum außerhalb unseres Sonnensystems identifiziert und deren chemische Zusammensetzung gemessen.


Grafik: ESA

Der Staubdetektor auf der internationalen Cassini Raumsonde hat die schwache Signatur aufgespürt, die von Staub außerhalb unseres Sonnensystems stammt, von der lokalen interstellaren Wolke: eine fast leere Blase von kosmischem Gas und Staub, durch die wir mit unserem Sonnensystem reisen. Die Graphik zeigt die Position von Saturn und unserem Sonnensystem innerhalb der lokalen interstellaren Wolke und unserer Milchstraße.

Dabei hat sich überraschend gezeigt, dass die unterschiedlichen Staubteilchen sehr ähnlich zusammengesetzt sind und den gesamten Elementmix des Kosmos in sich versammeln. Die Experten vermuten daher, dass der Staub in der „Hexenküche“ des Weltraums fortlaufend zerstört, neugebildet und damit in seiner Zusammensetzung angeglichen wird.

An den Untersuchungen eines internationalen Forscherteams waren Wissenschaftler des Instituts für Geowissenschaften und des Klaus-Tschira-Labors für Kosmochemie der Universität Heidelberg maßgeblich beteiligt. Die Forschungsergebnisse werden in der Zeitschrift „Science“ veröffentlicht.

„Interstellarer Staub, dessen einzelne Teilchen nur etwa 200 Nanometer groß und sehr schwer zu finden sind, ist gewissermaßen eine der letzten Bastionen des Unbekannten im Weltraum“, erklärt der Heidelberger Geowissenschaftler Prof. Dr. Mario Trieloff.

Der Staub ist dabei Teil der interstellaren Materie, die neben schweren Elementen im Wesentlichen aus Wasserstoffgas und Helium besteht und aus der durch Verdichtungsprozesse Sterne und Planeten entstehen können. Diese Teilchen bildeten auch das Rohmaterial für die schweren Elemente, die das Haupt-Baumaterial der Erde und anderer terrestrischer Planeten waren.

Für Untersuchungen des interstellaren Staubs ist die Wissenschaft bisher darauf angewiesen, dass Teilchen davon in unser Sonnensystem gelangen. Die Raumsonde „Stardust“ konnte bereits Partikel des sehr schwachen Stroms einfangen, der durch unser Sonnensystem zieht.

„Diese Teilchen waren allerdings ungewöhnlich groß. Daher sind die Untersuchungsergebnisse daraus möglicherweise nicht repräsentativ“, erläutert Prof. Trieloff. Dagegen konnte die „Cassini“-Raumsonde unter Millionen planetarer Staubpartikel 36 Partikel interstellaren Staubs identifizieren. Zudem ist der CDA in der Lage, diese mit Hilfe von Massenspektrometrie direkt vor Ort zu untersuchen, was deutlich präzisere Ergebnisse als bisher ermöglicht.

Nach Angaben von Dr. Frank Postberg, Heisenberg-Stipendiat am Institut für Geowissenschaften, konnten mit dem CDA zum ersten Mal massenspektrometrische Messungen an „einer statistisch bedeutsamen Menge solcher Staubpartikel“ durchgeführt werden.

Dies war nur möglich, nachdem in Heidelberg mit Hilfe aufwendiger Versuchsreihen Labormodelle des Staubdetektors kalibriert wurden. Dazu musste sogenannter Silikatstaub im Labor auf bis zu 40 Kilometer pro Sekunde beschleunigt werden, was in etwa der Geschwindigkeit interstellaren Staubs entspricht.

„Das Ergebnis der Messungen war sehr überraschend“, sagt Dr. Postberg. „Die 36 Partikel interstellaren Ursprungs, die in ihrer Zusammensetzung sehr ähnlich sind, enthalten eine Mischung der wichtigen gesteinsbildenden Elemente Magnesium, Eisen, Silicium und Calcium in durchschnittlichen kosmischen Häufigkeiten. Obwohl ein Staubteilchen weniger als ein Billionstel Gramm Masse besitzt, ist darin mit Ausnahme sehr flüchtiger Gase der gesamte Elementmix des Kosmos versammelt.

Solche Teilchen lassen sich in unserem Sonnensystem nicht finden.“ Die meisten Wissenschaftler hätten verschieden zusammengesetzte Staubpopulationen erwartet, die den verschiedenen Entstehungsprozessen in Atmosphären sterbender Sterne entsprechen. Sie finden sich auch im Sternenstaub in Meteoriten, der in seiner Isotopenzusammensetzung höchst individuell ist. „Unsere Daten erzählen aber eine völlig andere Geschichte“, betont Dr. Postberg.

Nach Einschätzung der Wissenschaftler hat der Staub seine Individualität verloren, weil er in der „Hexenküche“ des Weltraums homogenisiert wurde. Dort befinden sich riesige, Millionen Grad heiße Blasen von Supernovaexplosionen. Deren Ränder bestehen aus Schockfronten, die mit hunderten Kilometern pro Sekunde expandieren, wie der Erstautor und ESA-Wissenschaftler Dr. Nicolas Altobelli erläutert.

Nach seinen Worten haben theoretische Überlegungen bereits nahegelegt, dass interstellarer Staub diese energiereiche Umgebung nur ein paar hundert Millionen Jahre überleben kann und es nur einigen „Lucky Survivors“ gelingt, als intakter Sternenstaub in sich neu bildende Planetensysteme zu gelangen. Die aktuellen Untersuchungsergebnisse bestätigten nun, dass die meisten Partikel zerstört und in kühlen und dichten Regionen des Weltalls – den Molekülwolken – wieder neu gebildet werden. Von dort aus bringen interstellare Winde diese Teilchen als homogenisierten Staub in unser Sonnensystem.

Der Staubdetektor wurde von Wissenschaftlern des Deutschen Zentrums für Luft- und Raumfahrt (DLR), des Max-Planck-Instituts für Kernphysik in Heidelberg und der University of Kent (Canterbury/Großbritannien) entwickelt. DLR und die europäische Weltraumbehörde ESA unterstützen den Betrieb des Messinstruments. Die Projektleitung hat Dr. Ralf Srama von der Universität Stuttgart. Die chemischen Analysen werden von Dr. Postberg und Prof. Trieloff geleitet. Die Forschungsarbeiten wurden von der Klaus Tschira Stiftung unterstützt.

Originalveröffentlichung:
N. Altobelli, F. Postberg, K. Fiege, M. Trieloff, et al: Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science, 15. April 2016.

Kontakt:
Prof. Dr. Mario Trieloff / Dr. Frank Postberg
Institut für Geowissenschaften
Telefon +49 6221 54-6022 (Trieloff) / -8209 (Postberg)
mario.trieloff@geow.uni-heidelberg.de / Frank.Postberg@geow.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: CDA Cosmic DLR Geowissenschaften Kosmos Partikel Raumsonde Staubdetektor Staubpartikel Staubteilchen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Feinstaub weckt schlafende Viren in der Lunge

16.01.2017 | Biowissenschaften Chemie

Energieeffizienter Gebäudebetrieb: Monitoring-Plattform MONDAS identifiziert Einsparpotenzial

16.01.2017 | Messenachrichten

Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?

16.01.2017 | Biowissenschaften Chemie