Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Havarierte Satelliten: Eigenbewegung zuverlässig bestimmen und prognostizieren

01.08.2017

Im Kampf gegen gefährlichen Weltraummüll

Unkontrollierte Objekte im Erdorbit bergen massive Risiken für funktionstüchtige Satelliten und die gesamte Raumfahrt. Seit April 2012 fliegt auch der europäische Umweltsatellit ENVISAT manövrierunfähig um die Erde. Das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR hat wegweisende Methoden entwickelt, um die Eigenrotation des havarierten Satelliten präzise zu ermitteln – und so eine zukünftige De-Orbiting-Mission effektiv zu unterstützen.


© Fraunhofer FHR

Das Weltraumbeobachtungsradar TIRA des Fraunhofer FHR.


© Foto Fraunhofer FHR

Eine korrekt skalierte Radarbildrekonstruktion des Satelliten ENVISAT.

Der ehemalige Umweltsatellit ENVISAT ist eines der größten Raumfahrzeuge, die jemals von der ESA in die Erdumlaufbahn gebracht wurden. Bereits 2002 wurde der 2,3 Milliarden Euro teure und rund acht Tonnen schwere Umweltsatellit gestartet und verrichtete bis 2012 zuverlässig seinen Dienst – die Überwachung des Klimas, der Ozeane und der Landflächen des Planeten Erde.

Dann ging der Kontakt verloren. Der Erdbeobachtungssatellit fliegt in einer erdnahen Umlaufbahn in etwa 800 km Höhe – eine Region des Erdorbits mit einer hohen Populationsdichte an Weltraumobjekten. »Weltraummüll ist ein großes Problem in der erdnahen Raumfahrt. Der nun unkontrollierte Flug von ENVISAT bedeutet eine alltägliche Gefahr von Kollisionen mit aktiven Satelliten und Raumfahrzeugen«, betont Dr.-Ing. Delphine Cerutti-Maori, Geschäftsfeldsprecherin Weltraum am Fraunhofer FHR.

»Darüber hinaus entsteht weiteres Risikopotenzial, denn Zusammenstöße können zur Entstehung neuer Trümmerteile beitragen, die wiederum mit anderen Objekten kollidieren könnten – ein gefährlicher Schneeballeffekt.«

Unterstützung für ein sicheres De-Orbiting

Um der Situation zu begegnen, sucht die ESA zurzeit nach Lösungsansätzen, um ENVISAT auf eine tiefere Umlaufbahn zu bringen und schließlich in der Erdatmosphäre kontrolliert und sicher verglühen zu lassen. Solche sogenannten »De-Orbiting-Missionen« können jedoch nur gelingen, wenn zuvor die Eigendrehbewegung des Satelliten korrekt bestimmt wird. Erst dann kann festgelegt werden, mit welcher Methode der Satellit eingefangen werden soll. Das Forscherteam des Fraunhofer FHR will zukünftige De-Orbiting-Missionen effizient unterstützen.

»Unser Weltraumbeobachtungsradar TIRA kombiniert ein Ku-Band-Abbildungsradar und ein L-Band-Zielverfolgungsradar. Das bietet uns mittels ISAR-Bildgebung die einzigartige Möglichkeit, Weltraumobjekte hochaufgelöst abzubilden«, erklärt Dr.-Ing. Ludger Leushacke, Abteilungsleiter Radar zur Weltraumbeobachtung am Fraunhofer FHR.

»Im Gegensatz zu optischen Systemen bietet unser Radar-System entscheidende Vorteile: Vollständige Unabhängigkeit vom örtlichen Wetter, Einsatzfähigkeit bei Tag und bei Nacht, sowie eine Auflösung, die völlig unabhängig von der Entfernung des Objekts ist. Zudem können wir sowohl die Drehgeschwindigkeit von schnell rotierenden Objekten wie ENVISAT als auch von langsam rotierenden Objekten bestimmen.« Die mit TIRA aufgenommenen Radar-Rohdaten von ENVISAT werden mit am Fraunhofer FHR entwickelten speziellen Methoden prozessiert und im Anschluss ausgewertet.

Langzeitanalyse der Eigenrotation von ENVISAT

Hochaufgelöste Radarbilder werden erzeugt, indem die relative Drehung des beobachteten Objekts zur stationären Radaranlage genutzt wird. Dabei wird das Objekt von verschiedenen Betrachtungswinkeln beleuchtet. Allerdings hängt die Querskalierung im Radarbild von der tatsächlichen Drehgeschwindigkeit ab, die aber selbst ja erst aus den Daten gewonnen werden soll.

»Zur Bewältigung dieser Problematik bei der Bildgewinnung hat unser Expertenteam eine geeignete Methodik entwickelt, die Drahtgittermodelle der Objekte verwendet, um die Querskalierung richtig zu schätzen«, erläutert Cerutti-Maori. »Hierzu wird an verschiedene Bilder einer Passage manuell ein Drahtgittermodell des Objektes projiziert. Aus der zeitlichen Entwicklung der Projektionen über eine Passage lässt sich dann der Rotationsvektor des Objekts zuverlässig abschätzen.«

Für die Analyse der langzeitlichen Entwicklung der Eigenbewegung von ENVISAT wurden Beobachtungen aus dem Zeitraum von 2011, kurz vor Abbruch des Kontakts, bis 2016 herangezogen. Im regulären Dienst rotierte ENVISAT relativ langsam mit ca. 0.06°/s, was einer Umdrehung pro Erdumlauf entsprach. Kurz nach dem Abriss der Verbindung am 8. April 2012 konnte ein Anstieg der Eigendrehbewegung auf fast 3°/s festgestellt werden, etwa 45 Umdrehungen pro Umlauf.

Dieser Anstieg der Eigendrehgeschwindigkeit deutet nicht einen Zusammenstoß mit anderen Objekten hin, da die Zunahme graduell erfolgte und nicht plötzlich, lautet der Rückschluss der Forscherinnen und Forscher am Fraunhofer FHR. Seit Mitte 2013 ist eine Verlangsamung der Drehgeschwindigkeit zu beobachten: Sie lag Ende 2016 bei ca. 1.6°/s. »Unsere Untersuchungen können maßgeblich dazu beitragen, in Zukunft eine kontrollierte Entfernung des havarierten ENVISAT zu unterstützen, wenn die ESA sich dazu entscheidet«, so Leushacke.

»Die am Fraunhofer FHR entwickelten Methoden zur bildgestützten Aufklärung sind aktuell weltweit einzigartig und eignen sich bestens, um bei Weltraumobjekten Ausrichtung und Eigendrehbewegung zu analysieren und deren langzeitliche Entwicklung belastbar zu prognostizieren. Darüber hinaus können sie eingesetzt werden, um auch potenzielle äußere Beschädigungen der Satelliten effizient zu untersuchen«.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/august/havarierte-s...

Jens Fiege | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften