Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum die Haut unbeschadet Baden geht

06.02.2014
Physiker vollziehen anhand eines Computermodells nach, wie sich runzlige Haut wieder glättet

Runzlige Finger nach einem Bad: Wir alle kennen dieses Phänomen. Verbringen wir längere Zeit im Wasser, nimmt unsere Haut Feuchtigkeit auf, und die Zellen der äußeren Hautschicht schwellen an.


Das Computermodell zeigt die Struktur der Keratin-Fasern der äußeren Hautzellen im zusammengezogenen (links) und ausgedehnten (rechts) Zustand. Der Raum zwischen den Fasern ist mit Wasser gefüllt.

Abbildung: Evans/Roth

In trockener Umgebung gibt die Haut das zusätzlich aufgenommene Wasser aber ohne bleibende Schäden wieder ab und ist schon kurze Zeit später wieder glatt.

Wie dies möglich ist, konnten Wissenschaftler nun anhand eines physikalischen Modells nachvollziehen: Professor Roland Roth vom Institut für Theoretische Physik der Universität Tübingen und Physikerin Dr. Myfanwy Evans von der Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) modellierten im Computer erstmals die Struktur der äußeren Hautschicht auf der mesoskopischen Skala. Ihre Ergebnisse wurden kürzlich in der Zeitschrift „Physical Review Letters“ veröffentlicht.

Unsere Haut ist ein komplexes Organ mit einer Vielzahl unterschiedlicher Funktionen. Die äußere Hautschicht, die sogenannte Epidermis, besteht aus abgestorbenen Hautzellen, erfüllt aber zentrale Aufgaben: Beispielsweise schützt sie unseren Körper vor Wasserverlust in trockener Umgebung und bewahrt ihn umgekehrt auch beim Baden vor der Aufnahme von zu viel Wasser.

Die Wissenschaftler berechneten in ihrem Computermodell die Prozesse, die bei einer Wasseraufnahme in den einzelnen Komponenten der Haut ablaufen, und stellten ein interessantes Wechselspiel in den äußeren Hautzellen fest. Die äußere Hautschicht enthält Keratin-Fasern in einer geometrisch geordneten Struktur. Keratin ist hydrophil, fühlt sich also in wässriger Umgebung sehr wohl, was erklärt, warum Hautzellen Wasser aufnehmen. Schwellen die Zellen dabei an, werden die Keratin-Fasern gedehnt ‒ dies kostet wiederum elastische Energie, wie bei einer Spiralfeder, die man in die Länge zieht.

Das Wechselspiel dieser Kräfte, die in entgegengesetzter Richtung wirken, bringt die Ausdehnung der Zellen zum Stillstand und sorgt dafür, dass die Haut nur eine begrenzte Menge Wasser aufnimmt. Die Ausdehnung stoppt, bevor sich die Keratin-Fasern berühren und permanent vernetzen können, was eine dauerhafte Änderung der mechanischen Eigenschaften der Zellen bewirken würde. Das führt dazu, dass unsere Haut das aufgenommene Wasser wieder abgibt und sich ohne bleibende Schäden glättet.

Die Studie könnte helfen, Hautkrankheiten besser zu verstehen und zu behandeln, und künstliche Materialien nach dem Vorbild der Haut zu schaffen.

Kontakt:
Prof. Dr. Roland Roth
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Theoretische Physik
Telefon: +49 7071 29-76380
Roland.Roth[at]uni-tuebingen.de
Dr. Myfanwy Evans
Universität Erlangen-Nürnberg
Institut für Theoretische Physik
Telefon: +49 9131 85 28447
myfanwy.e.evans[at]physik.uni-erlangen.de

Antje Karbe | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise