Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hauchdünne Grenzgänger – Wachstum von Aluminiumoxid-Nanodrähten erstmals beobachtet

25.10.2010
Hauchdünne Nanodrähte könnten in der Elektronik, Optik und Medizintechnik in den kommenden Jahren dazu beitragen, Handys oder Computer kompakter zu machen und eine besonders hohe Bildschirm-Auflösung zu erzielen. Einem internationalen Forscherteam um die LMU-Physikerin Professor Christina Scheu ist es nun erstmals gelungen, die Entstehung von Aluminiumoxid-Nanodrähten in atomarer Auflösung und in Echtzeit zu beobachten.

Dabei stellten die Wissenschaftler fest, dass das selbstkatalytische Wachstum der Aluminiumoxid-Drähte in einem zweistufigen Prozess erfolgt, wobei der Draht entlang seiner Längsachse Lage für Lage aufgebaut wird.

Die bislang einzigartigen Aufnahmen gelangen den Forschern mithilfe eines hochauflösenden Elektronenmikroskops. „Unsere Untersuchungen sind wichtig, um das Wachstum von Nanodrähten aus verschiedenen Materialien zu verstehen und dieses anschließend bewusst steuern und verändern zu können“, erläutert Scheu, deren Forschungsarbeiten im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) gefördert werden. (Science online, 21. Oktober 2010).

Hauchdünne Nanodrähte mit Durchmessern von weniger als 50 Nanometern, was Milliardstel Meter entspricht, haben das Potenzial, elektronische Geräte – etwa Handys und Computer – künftig kompakter zu machen. Ihr Wachstum kann aber nur gezielt beeinflusst werden, wenn die Forschung den zugrunde liegenden Entstehungsprozess im Detail versteht. Meist wachsen Nanodrähte in einem sogenannten Gas-Flüssigkeit-Festkörper-Prozess (Vapour-Liquid-Solid Growth oder VLS).

Dabei gelangen die zum Wachstum benötigten Atome aus der Gasphase über die flüssige Phase in einen festen Zustand, der dann den Nanodraht bildet. „Nanodrähte aus Silizium wachsen zum Beispiel, indem sich die Silizium-Atome in einem Tropfen aus flüssigem Gold lösen und dort in Richtung der Grenzfläche des Nanodrahts bewegen, an den sie sich dann anlagern“, erläutert Professor Christina Scheu von Department Chemie und vom Center for NanoScience (CeNS).

Unklar war bisher jedoch, was passiert, wenn die flüssige Phase die zum Wachstum benötigte Atomsorte nicht lösen kann. „Bei unserem System ist genau das der Fall“, berichtet Scheu, unter deren Leitung sich ein internationales Forscherteam aus Korea, Israel, den USA und Deutschland mit dieser Frage beschäftigte. „Der zum Wachstum der Aluminiumoxid-Nanodrähte verwendete flüssige Al-Tropfen kann bei hohen Temperaturen keinen Sauerstoff aufnehmen.“ Die Wissenschaftler untersuchten daher, welche Auswirkungen dies hat und führten bei 750 Grad Celsius Experimente in einem Transmissions-Elektronenmikroskop durch, das sich am Max-Planck-Institut für Metallforschung in Stuttgart befindet.

Mit diesen Versuchen gelang es, die atomaren Prozesse beim Wachstum der Aluminiumoxid-Drähte zu beobachten. Dabei zeigte sich, dass das selbstkatalytische Wachstum der Nanodrähte in einem zweistufigen Prozess erfolgt. An den sogenannten Dreiphasenpunkten – oder Tripelpunkten – zwischen flüssiger Phase, Gasphase und fester Phase werden zunächst kleine Kristallfacetten gebildet und anschließend wieder aufgelöst. „Wenn die Kristallfacetten in die Länge wachsen, wird Sauerstoff frei, der entlang der Grenzfläche zwischen Flüssigkeit und Nanodraht eingebaut werden kann“, sagt Scheu. „Damit wächst der Nanodraht um eine Atomlage.“

Diese Vorgänge wurden in einem Echtzeit-Video festgehalten. „Ohne diese hochauflösenden Aufnahmen hätte man die atomaren Prozesse beim zweistufigen Wachstum der Aluminiumoxid-Drähte gar nicht aufklären können“, sagt Scheu. „Außerdem wäre uns wohl die zentrale Rolle der Tripelpunkte entgangen, die bisher oft als starr angesehen wurden.“ Das detaillierte Verständnis der Entstehung von Nanodrähten ist die Voraussetzung für die gezielte Manipulation ihres Wachstums. Scheu und ihr Team wollen in nachfolgenden Studien nun das Wachstum, die Struktur und Eigenschaften von Nanodrähten aus anderen Materialien aufklären.

Publikation:
„Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires”;
Sang Ho Oh, Matthew F. Chisholm, Yaron Kauffmann, Wayne D. Kaplan,
Weidong Luo, Manfred Rühle, Christina Scheu;
Science, Band 330 no. 6003, pp. 489-493
21. Oktober 2010
DOI: 10.1126/science.1190596
Ansprechpartner:
Prof. Dr. Christina Scheu
Department Chemie & Center for NanoScience
Tel.: 089 / 2180 - 77184
E-Mail: Christina.Scheu@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.cup.uni-muenchen.de/pc/scheu/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie