Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hassliebe auf dem Silberparkett

12.01.2009
Der Kontakt zwischen Metallen und organischen Molekülen spielt in der Elektronik der Zukunft eine große Rolle. Würzburger Physiker haben einen Effekt entdeckt, der solche Kontakte entscheidend verbessern könnte. Ihre Forschungsergebnisse veröffentlichen sie in der aktuellen Ausgabe von Nature Physics.

Elektronische Bauteile auf der Basis von organischen Materialien finden sich zunehmend in moderner Technik. In Form von organischen Leuchtdioden, so genannten OLEDs, kommen sie bereits in Handy-Displays und in Fernsehgeräten zum Einsatz. OFETs - organische Feldeffekt-Transistoren - sind interessant für Anwendung, die nur geringe Speicherdichten oder kurzzeitigen Einsatz erfordern wie beispielsweise elektronische Wasserzeichen, Barcodes oder Sensoren zur Einmalnutzung, etwa in der Medizin.


Phthalocyanin-Moleküle auf der Silberoberfläche aus der Vogelperspektive (unterer Teil) und in der Seitenansicht (oberer Teil). Die rot und grün eingefärbten Bereiche geben die Ladungsverteilung der Elektronen an. Die im Text angesprochenen \"Elektronenwolken\" im Silber sind im oberen Teil des Bildes in gelb dargestellt. (Grafik Christian Kumpf)

Weniger Leistung und niedrigere Kosten

Diese Bauteile sind bislang nicht zu solchen Höchstleistungen fähig wie ihre vergleichbaren Konkurrenten, die aus Silizium hergestellt werden. Dafür haben sie aber den unschlagbaren Vorteil, dass sie sehr viel billiger sind. Wie sich ihre Leistung verbessern lässt, daran forschen Wissenschaftler auf der ganzen Welt. Würzburger Physiker sind auf diesem Weg jetzt möglicherweise einen großen Schritt weitergekommen - durch einen Zufallstreffer.

"Das war ein unerwarteter Effekt. Damit hatten wir nicht gerechnet", sagt Christian Kumpf, Autor der Publikation, die die Fachzeitschrift Nature Physics in ihrer aktuellen Ausgabe veröffentlicht hat. Kumpf war bis vor Kurzem Privatdozent am Physikalischen Institut der Universität Würzburg; vor wenigen Wochen hat er die Leitung einer Arbeitsgruppe am Forschungszentrum Jülich übernommen. Von dort aus wird er die in Würzburg begonnenen Projekte weiter verfolgen - gemeinsam mit der Arbeitsgruppe von Professor Friedrich Reinert am Lehrstuhl für Experimentelle Physik II und anderen Kooperationspartnern.

Ein Silberkristall wird bedampft

Für ihre Untersuchungen haben die Physiker einen etwa einen Zentimeter großen Silberkristall mit einer extrem sauberen Oberfläche präpariert. Anschließend brachten sie auf diesen Kristall eine dünne Schicht organischer Moleküle auf, indem sie das Material im Vakuum in einem kleinen Tiegel verdampften und auf dem Kristall abschieden. Zur Verwendung kamen dabei so genannte Metall-Phthalocyanine, eine Stoffklasse, die durch eine Stickstoff-Kohlenstoff-Ringstruktur und ein zentrales Metallatom gekennzeichnet ist. Die Überraschung kam bei der folgenden Untersuchung der geometrischen Struktur dieser Molekülschicht auf der Silberoberfläche.

"Normalerweise ordnen sich derartige organische Moleküle auf metallischen Oberflächen so an, dass sie zum einen den größtmöglichen Kontakt mit dem Metall suchen und zum anderen aber immer auch in enger Nachbarschaft mit den anderen Molekülen bleiben wollen. Die Moleküle 'mögen' sich, sie zeigen eine attraktive Wechselwirkung zu ihren Nachbarn", sagt Christian Kumpf. Auf dem Metall bilden sich somit Inseln organischer Materie, die kontinuierlich wachsen und irgendwann aneinander stoßen. Es sind normalerweise sehr viele, und damit vor allem kleine Inseln, deren Grenzen sehr unregelmäßig verlaufen. Diese Grenzen, sogenannte Korngrenzen, beschränken die Leistung der Bauteile, zum Beispiel ihre elektrische Leitfähigkeit, wenn sie sehr häufig vorkommen.

"Elektronenwolken" sorgen für Abstoßung

Ganz anders hingegen verhielten sich die Phthalocyanine: "Die Moleküle mögen sich nicht, sie ordnen sich zwar ebenfalls flach auf dem Silber an, allerdings mit größtmöglichem Abstand zu ihren Nachbarn", sagt Kumpf. Nach dem Grund für dieses unerwartete Verhalten mussten die Physiker erst einmal suchen; bei den Elektronen wurden sie fündig. "Wir konnten nachweisen, dass die organischen Moleküle und das Silber elektrische Ladung, also Elektronen, austauschen", schildert Kumpf. In der Folge entstünden "Elektronenwolken" in dem Silberkristall unterhalb der Phthalocyanin-Moleküle, die sich gegenseitig abstoßen. Diese Kräfte seien größer als die sonst unter Molekülen wirksamen Anziehungskräfte, die so genannten van-der-Waals-Kräfte.

"Diese Entdeckung klingt vielleicht auf den ersten Blick nicht wirklich spektakulär. Sie hat aber neben ihrer grundlegenden Bedeutung - ein solches Verhalten wurde für derartige Moleküle noch nie beobachtet - möglicherweise auch große Konsequenzen für organische elektronische Bauteile", sagt Kumpf. Dadurch, dass sich die Moleküle absolut gleichmäßig verteilen, bilden sie eine perfekt geordnete, homogene Schicht von bisher unerreichter Größe auf der Silberoberfläche. Der negative Effekt der vielen Korngrenzen wird deutlich reduziert. "Dies ist ein möglicherweise sehr großer Schritt in Richtung einer verbesserten Leistungsfähigkeit", sagt Kumpf.

Vielversprechende Ergebnisse

Bis zur Anwendbarkeit sind allerdings noch weitere Schritte notwendig: "Man braucht einen dickeren Kristall aus organischen Molekülen, damit die Bauteile effektiv arbeiten können", sagt Kumpf. Gemeinsam mit den Physikern aus Würzburg arbeitet er bereits daran - mit vielversprechenden Ergebnissen. Mittlerweile ist die Arbeitsgruppe in der Lage, auch dickere Schichten aus Phthalocyanin-Molekülen in der erforderlichen Qualität auf dem Silberkristall aufzubringen.

"Tuning intermolecular interaction in long-range-ordered submonolayer organic films". Christoph Stadler, Sören Hansen, Ingo Kröger, Christian Kumpf and Eberhard Umbach. Nature Physics DOI: 10.1038/NPHYS1176

Kontakt: PD Dr. Christian Kumpf, T: (02461) 61-1452, E-Mail: c.kumpf@fz-juelich.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie