Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Halbleiter magnetisch werden

15.10.2012
Materialien, die bei Raumtemperatur sowohl halbleitende als auch magnetische Eigenschaften besitzen, sind ein lange gehegter Wunsch von Physikern.

Sie könnten schnelleres und energiesparendes Rechnen ermöglichen und so die Elektro- und Informationstechnologie revolutionieren. Ein internationales Forscherteam unter Beteiligung von Physikern des Forschungszentrums Jülich ist diesem Ziel einen Schritt näher gekommen.


Die Abbildung zeigt schematisch den Ablauf des Experiments: Photonen (grüner Pfeil) treffen auf die Probe, wodurch Elektronen freigesetzt werden (roter Pfeil). Ihre Energie und der Winkel, unter dem sie die Probe verlassen, werden gemessen. Ein Messergebnis ist rechts unten abgebildet.
Quelle: Forschungszentrum Jülich

Mit Hilfe einer kürzlich entwickelten Methode beantworten sie die kontrovers diskutierte Frage, wie der Magnetismus in einem der wichtigsten magnetischen Halbleiter bei tiefen Temperaturen entsteht. Die Ergebnisse sind in der aktuellen Ausgabe der renommierten Fachzeitschrift „Nature Materials“ nachzulesen (DOI: 10.1038/NMAT3450).

Halbleiter bilden die Basis unserer Informationstechnologie. Sie verarbeiten die Information in Form von elektrischer Ladung, den Elektronen. Doch Elektronen besitzen neben der Ladung eine weitere nutzbare Eigenschaft, den Spin. Diese Rotation des Elektrons in die eine oder die andere Richtung um sich selbst erzeugt ein magnetisches Moment, das weitere Informationen tragen kann. Es wird bereits zur magnetischen Speicherung von Daten genutzt.

Spins könnten zukünftig auch dazu genutzt werden, die Information zu transportieren. Dazu wäre weniger Energie notwendig als zum Transport von Ladungen. Materialien, die magnetische mit Halbleiter-Eigenschaften vereinen, können Spins verlustarm transportieren und hätten für Anwendungen den großen Vorteil, dass sie leicht in die vorhandene Halbleitertechnologie integrierbar wären. Doch Halbleiter sind normalerweise nicht magnetisch. Versuche, sie dauerhaft magnetisch zu machen, gelingen überwiegend bei extrem tiefen Temperaturen, die sich für technische Anwendungen nicht eignen.

Eines der wichtigsten magnetischen Halbleitermaterialien ist Galliummanganarsenid (GaMnAs), das durch Dotierung des Halbleiters Galliumarsenid (GaAs) mit Mangan erzeugt wird. Es ist bei Temperaturen unter 100 Grad Kelvin magnetisch, wie schon seit 1996 bekannt ist. Umstritten war bisher, wie dieser Magnetismus entsteht.

Wissenschaftlern aus Deutschland, den USA, Japan und Italien gelang es nun, die Energie der Elektronen zu bestimmen, die die magnetische Eigenschaft in Galliummanganarsenid ausmachen. Dafür untersuchten sie Proben von Galliumarsenid und Galliummanganarsenid mittels winkelaufgelöster Photoemissionsspektroskopie an der stärksten Synchrotronanlage der Welt, „SPring-8“ in Japan.

Dabei werden Proben mit Photonen beschossen, wodurch Elektronen die Probe verlassen. Ihre Energie und der Winkel, unter dem sie die Probe verlassen, werden gemessen und geben Auskunft über die Energie und die Verteilung der Elektronen in der Probe. Durch den Vergleich der Messkurven fanden die Forscher ein kleines zusätzliches Signal im Galliummanganarsenid und identifizierten damit die sogenannten Valenzelektronen des Mangan, die den Magnetismus ausmachen.

„Galliummanganarsenid enthält nur eine kleine Menge Mangan und die Unterschiede zwischen den Messkurven sind deshalb nur sehr klein. Die sehr energiereichen Photonen von SPring-8 dringen aber tiefer in die Probe als energieärmere Photonen und ermöglichen den zuverlässigen Nachweis auch kleiner Unterschiede zwischen Materialien, wie in diesem Fall“, erklärt Dr. Lukasz Plucinski vom Jülicher Peter Grünberg Institut. Bei oberflächennahen Messungen mit energiearmen Photonen fallen solche geringen Unterschiede nicht auf oder Ergebnisse sind nicht signifikant, weil schon kleinste Verunreinigungen oder Unebenheiten der Oberflächen Messabweichungen verursachen können.

Die hohen Energien der Photonen, die an großen Synchrotronanlagen erzeugt werden, ermöglichen Forschern erst seit kurzem, Materialproben tief im Inneren zu untersuchen; dies hatten die Forscher aus Jülich und Berkeley bereits 2011 gezeigt. Vorher beschränkten sich die Messungen auf wenige Atomlagen an der Oberfläche.

„Die Übereinstimmung der Messergebnisse mit den theoretischen Berechnungen ist sehr gut und hat auch die Gutachter überzeugt“, freut sich Prof. Claus M. Schneider, Direktor am Peter Grünberg Institut. „Wir haben damit eine Methode an der Hand, die uns bei der gezielten Suche nach Halbleitern, die bei Raumtemperatur magnetisch sind, helfen kann.“

Originalveröffentlichung:
Bulk electronic structure of the dilute magnetic
semiconductor Ga1-xMnxAs through hard X-ray angle-resolved
photoemission; A. X. Gray at al.; Nature Materials (2012), DOI: 10.1038/NMAT3450

Bildmaterial können Sie am Montag, 15. Oktober, von 12 Uhr an auf der Homepage des Forschungszentrums herunterladen (http://www.fz-juelich.de)

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Pressemitteilung vom 18.8.2011 „Blick in bisher ungeahnte Tiefen“: http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-08-18photoemissionsspektroskopie.html
Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6): www.fz-juelich.de/pgi/pgi-6/

Ansprechpartner:
Dr. Lukasz Plucinski, Forschungszentrum Jülich, Elektronische Eigenschaften (PGI-6), Tel. 02461 61-6684, E-Mail: l.plucinski@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten