Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Halbleiter magnetisch werden

15.10.2012
Materialien, die bei Raumtemperatur sowohl halbleitende als auch magnetische Eigenschaften besitzen, sind ein lange gehegter Wunsch von Physikern.

Sie könnten schnelleres und energiesparendes Rechnen ermöglichen und so die Elektro- und Informationstechnologie revolutionieren. Ein internationales Forscherteam unter Beteiligung von Physikern des Forschungszentrums Jülich ist diesem Ziel einen Schritt näher gekommen.


Die Abbildung zeigt schematisch den Ablauf des Experiments: Photonen (grüner Pfeil) treffen auf die Probe, wodurch Elektronen freigesetzt werden (roter Pfeil). Ihre Energie und der Winkel, unter dem sie die Probe verlassen, werden gemessen. Ein Messergebnis ist rechts unten abgebildet.
Quelle: Forschungszentrum Jülich

Mit Hilfe einer kürzlich entwickelten Methode beantworten sie die kontrovers diskutierte Frage, wie der Magnetismus in einem der wichtigsten magnetischen Halbleiter bei tiefen Temperaturen entsteht. Die Ergebnisse sind in der aktuellen Ausgabe der renommierten Fachzeitschrift „Nature Materials“ nachzulesen (DOI: 10.1038/NMAT3450).

Halbleiter bilden die Basis unserer Informationstechnologie. Sie verarbeiten die Information in Form von elektrischer Ladung, den Elektronen. Doch Elektronen besitzen neben der Ladung eine weitere nutzbare Eigenschaft, den Spin. Diese Rotation des Elektrons in die eine oder die andere Richtung um sich selbst erzeugt ein magnetisches Moment, das weitere Informationen tragen kann. Es wird bereits zur magnetischen Speicherung von Daten genutzt.

Spins könnten zukünftig auch dazu genutzt werden, die Information zu transportieren. Dazu wäre weniger Energie notwendig als zum Transport von Ladungen. Materialien, die magnetische mit Halbleiter-Eigenschaften vereinen, können Spins verlustarm transportieren und hätten für Anwendungen den großen Vorteil, dass sie leicht in die vorhandene Halbleitertechnologie integrierbar wären. Doch Halbleiter sind normalerweise nicht magnetisch. Versuche, sie dauerhaft magnetisch zu machen, gelingen überwiegend bei extrem tiefen Temperaturen, die sich für technische Anwendungen nicht eignen.

Eines der wichtigsten magnetischen Halbleitermaterialien ist Galliummanganarsenid (GaMnAs), das durch Dotierung des Halbleiters Galliumarsenid (GaAs) mit Mangan erzeugt wird. Es ist bei Temperaturen unter 100 Grad Kelvin magnetisch, wie schon seit 1996 bekannt ist. Umstritten war bisher, wie dieser Magnetismus entsteht.

Wissenschaftlern aus Deutschland, den USA, Japan und Italien gelang es nun, die Energie der Elektronen zu bestimmen, die die magnetische Eigenschaft in Galliummanganarsenid ausmachen. Dafür untersuchten sie Proben von Galliumarsenid und Galliummanganarsenid mittels winkelaufgelöster Photoemissionsspektroskopie an der stärksten Synchrotronanlage der Welt, „SPring-8“ in Japan.

Dabei werden Proben mit Photonen beschossen, wodurch Elektronen die Probe verlassen. Ihre Energie und der Winkel, unter dem sie die Probe verlassen, werden gemessen und geben Auskunft über die Energie und die Verteilung der Elektronen in der Probe. Durch den Vergleich der Messkurven fanden die Forscher ein kleines zusätzliches Signal im Galliummanganarsenid und identifizierten damit die sogenannten Valenzelektronen des Mangan, die den Magnetismus ausmachen.

„Galliummanganarsenid enthält nur eine kleine Menge Mangan und die Unterschiede zwischen den Messkurven sind deshalb nur sehr klein. Die sehr energiereichen Photonen von SPring-8 dringen aber tiefer in die Probe als energieärmere Photonen und ermöglichen den zuverlässigen Nachweis auch kleiner Unterschiede zwischen Materialien, wie in diesem Fall“, erklärt Dr. Lukasz Plucinski vom Jülicher Peter Grünberg Institut. Bei oberflächennahen Messungen mit energiearmen Photonen fallen solche geringen Unterschiede nicht auf oder Ergebnisse sind nicht signifikant, weil schon kleinste Verunreinigungen oder Unebenheiten der Oberflächen Messabweichungen verursachen können.

Die hohen Energien der Photonen, die an großen Synchrotronanlagen erzeugt werden, ermöglichen Forschern erst seit kurzem, Materialproben tief im Inneren zu untersuchen; dies hatten die Forscher aus Jülich und Berkeley bereits 2011 gezeigt. Vorher beschränkten sich die Messungen auf wenige Atomlagen an der Oberfläche.

„Die Übereinstimmung der Messergebnisse mit den theoretischen Berechnungen ist sehr gut und hat auch die Gutachter überzeugt“, freut sich Prof. Claus M. Schneider, Direktor am Peter Grünberg Institut. „Wir haben damit eine Methode an der Hand, die uns bei der gezielten Suche nach Halbleitern, die bei Raumtemperatur magnetisch sind, helfen kann.“

Originalveröffentlichung:
Bulk electronic structure of the dilute magnetic
semiconductor Ga1-xMnxAs through hard X-ray angle-resolved
photoemission; A. X. Gray at al.; Nature Materials (2012), DOI: 10.1038/NMAT3450

Bildmaterial können Sie am Montag, 15. Oktober, von 12 Uhr an auf der Homepage des Forschungszentrums herunterladen (http://www.fz-juelich.de)

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Pressemitteilung vom 18.8.2011 „Blick in bisher ungeahnte Tiefen“: http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-08-18photoemissionsspektroskopie.html
Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6): www.fz-juelich.de/pgi/pgi-6/

Ansprechpartner:
Dr. Lukasz Plucinski, Forschungszentrum Jülich, Elektronische Eigenschaften (PGI-6), Tel. 02461 61-6684, E-Mail: l.plucinski@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy