Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halbleiter in Zeitlupe

13.03.2015

Quantensprung in die Praxis: Der Marburger Physiker Professor Dr. Mackillo Kira hat Prozesse in Halbleitern als Modell genutzt, um Wechselwirkungen in einem extremen quantenphysikalischen System zu erklären, einem so genannten Bose-Einstein-Kondensat. Demnach steuern dieselben Mechanismen die Wechselwirkungen in beiden Systemen. Kira veröffentlicht seine Ergebnisse in der aktuellen Ausgabe des Online-Wissenschaftsmagazins „Nature Communication“, die am 13. März 2015 erscheint.

Halbleiter sind Systeme, die theoretisch umfassend beschrieben und technisch gut kontrolliert sind; sie liefern Anwendungen wie Laser oder mikroelektronische Schaltungen. Bose-Einstein-Kondensate hingegen dienen als Testumgebungen für bizarre Eigenschaften der Quantenwelt; sie bestehen aus ununterscheidbaren Teilchen, die sich wie ein einziges physikalisches Objekt verhalten – eine Art Teilchenwolke.


Professor Dr. Mackillo Kira

(Foto: AG Theoretische Halbleiterphysik)

Trotz der himmelweiten Unterschiede, die zwischen beiden Systemen bestehen, prognostiziert Kira: „Die Reise von der quantenmechanischen Forschung in die Praxis wird nicht mehr lange dauern.“

Licht kann Elektronen in Halbleitern dazu anregen, sich mit so genannten Defekt-Elektronen zu vereinigen, das sind Stellen im Halbleiter, an denen ein Elektron fehlt. Solche Wechselwirkungen beeinflussen, wie ein Laser auf Halbleiterbasis funktioniert.

Auch für Bose-Einstein-Kondensate spielen physikalische Wechselwirkungen eine entscheidende Rolle. Sie können zum Beispiel dazu führen, dass normale Atome aus der Quantenwolke ausgegliedert werden.

Wie Kira in seinem Aufsatz zeigt, werden die Wechselwirkungen in Bose-Einstein-Kondensaten einerseits und Halbleitern andererseits durch dieselben Mechanismen gesteuert. „Cluster-Erzeugungsprozesse stellen eine direkte Verbindung zwischen den beiden Systemen dar“, erläutert der Autor.„Auf diese Weise lassen sich Quantenprozesse, die in Halbleitern auftreten, wie unter Zeitlupe beobachten, da Wechselwirkungen in Bose-Einstein-Kondensaten millionenmal langsamer stattfinden.“

Professor Dr. Mackillo Kira lehrt Theoretische Halbleiterphysik an der Philipps-Universität. Erst vor wenigen Jahren legte er zusammen mit Kollegen einen neuen Theorierahmen für die Quanten-Laserspektroskopie vor.

Originalveröffentlichung: Mackillo Kira: Coherent quantum depletion of an interacting atom condensate, Nature Communications 2015, DOI: 10.1038/ncomms7624

Weitere Informationen:
Ansprechpartner: Professor Dr. Mackillo Kira,
Fachgebiet Theoretische Halbleiterphysik
Tel.: 06421 28-24222
E-Mail: Mackillo.Kira@physik.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb13/forschung/theoretische-halbleiterphysik

Pressemitteilung zur Theorie der quantenoptischen Spektroskopie: http://www.uni-marburg.de/aktuelles/news/2011/0918a

Johannes Scholten | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics