Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halbleiter in Zeitlupe

13.03.2015

Quantensprung in die Praxis: Der Marburger Physiker Professor Dr. Mackillo Kira hat Prozesse in Halbleitern als Modell genutzt, um Wechselwirkungen in einem extremen quantenphysikalischen System zu erklären, einem so genannten Bose-Einstein-Kondensat. Demnach steuern dieselben Mechanismen die Wechselwirkungen in beiden Systemen. Kira veröffentlicht seine Ergebnisse in der aktuellen Ausgabe des Online-Wissenschaftsmagazins „Nature Communication“, die am 13. März 2015 erscheint.

Halbleiter sind Systeme, die theoretisch umfassend beschrieben und technisch gut kontrolliert sind; sie liefern Anwendungen wie Laser oder mikroelektronische Schaltungen. Bose-Einstein-Kondensate hingegen dienen als Testumgebungen für bizarre Eigenschaften der Quantenwelt; sie bestehen aus ununterscheidbaren Teilchen, die sich wie ein einziges physikalisches Objekt verhalten – eine Art Teilchenwolke.


Professor Dr. Mackillo Kira

(Foto: AG Theoretische Halbleiterphysik)

Trotz der himmelweiten Unterschiede, die zwischen beiden Systemen bestehen, prognostiziert Kira: „Die Reise von der quantenmechanischen Forschung in die Praxis wird nicht mehr lange dauern.“

Licht kann Elektronen in Halbleitern dazu anregen, sich mit so genannten Defekt-Elektronen zu vereinigen, das sind Stellen im Halbleiter, an denen ein Elektron fehlt. Solche Wechselwirkungen beeinflussen, wie ein Laser auf Halbleiterbasis funktioniert.

Auch für Bose-Einstein-Kondensate spielen physikalische Wechselwirkungen eine entscheidende Rolle. Sie können zum Beispiel dazu führen, dass normale Atome aus der Quantenwolke ausgegliedert werden.

Wie Kira in seinem Aufsatz zeigt, werden die Wechselwirkungen in Bose-Einstein-Kondensaten einerseits und Halbleitern andererseits durch dieselben Mechanismen gesteuert. „Cluster-Erzeugungsprozesse stellen eine direkte Verbindung zwischen den beiden Systemen dar“, erläutert der Autor.„Auf diese Weise lassen sich Quantenprozesse, die in Halbleitern auftreten, wie unter Zeitlupe beobachten, da Wechselwirkungen in Bose-Einstein-Kondensaten millionenmal langsamer stattfinden.“

Professor Dr. Mackillo Kira lehrt Theoretische Halbleiterphysik an der Philipps-Universität. Erst vor wenigen Jahren legte er zusammen mit Kollegen einen neuen Theorierahmen für die Quanten-Laserspektroskopie vor.

Originalveröffentlichung: Mackillo Kira: Coherent quantum depletion of an interacting atom condensate, Nature Communications 2015, DOI: 10.1038/ncomms7624

Weitere Informationen:
Ansprechpartner: Professor Dr. Mackillo Kira,
Fachgebiet Theoretische Halbleiterphysik
Tel.: 06421 28-24222
E-Mail: Mackillo.Kira@physik.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb13/forschung/theoretische-halbleiterphysik

Pressemitteilung zur Theorie der quantenoptischen Spektroskopie: http://www.uni-marburg.de/aktuelles/news/2011/0918a

Johannes Scholten | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik