Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HADES und die Suche nach der Dunklen Materie

05.05.2014

Obwohl sie das Weltall dominieren, kennt niemand ihre genaue Beschaffenheit: Dunkle Materie und Dunkle Energie. Im HADES-Experiment fahnden Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Physikern aus 17 europäischen Instituten nach „dem Teilchen“, das die Dunkle Materie erklären soll. Wie kürzlich in der Fachzeitschrift "Physics Letters B" berichtet, scheidet das Dunkle Photon, auch U-Boson genannt, als möglicher Kandidat zunächst aus.

Die wohl größten Rätsel in der Astrophysik sind die Dunkle Energie und die Dunkle Materie. Die Dunkle Energie macht 75 Prozent des Universums und die Dunkle Materie etwa 20 Prozent aus; die uns bekannte Welt beschränkt sich damit auf lediglich rund fünf Prozent der Materie.


Mit dem HADES-Detektor an GSI in Darmstadt suchen Wissenschaftler nach der Dunklen Materie.

3D Rendering-Modell: A. Schmah/HADES

Ohne Dunkle Energie und Materie können weder die Ausdehnung des Universums noch dessen Dichteverteilung – und damit Strukturen wie Galaxien, Sterne, Planeten und andere kompakte Objekte – erklärt werden. Dabei ist die Existenz von Dunkler Energie und Dunkler Materie nur theoretisch; einen direkten Nachweis gibt es bislang nicht. Antworten erhofften sich Wissenschaftler durch das Aufspüren unbekannter Teilchen, die nicht in das Standardmodell der Teilchenphysik passen.

„Das negative Resultat der aktuellen HADES-Experimente ist sehr wichtig, denn es zeigt, dass wir die Dunkle Materie auch in minimalen Abweichungen innerhalb des Standardmodells suchen müssen“, erläutert Professor Burkhard Kämpfer, Leiter der Hadronenphysik-Gruppe am Dresdner Helmholtz-Zentrum. Eine neue heiße Spur liefern etwa die magnetischen Momente der Myonen – das sind Elementarteilchen, die den Elektronen ähneln. Professor Kämpfer: „Bei hochpräzisen Experimenten wurden Hinweise auf Diskrepanzen des Standardmodelles entdeckt, womit sich die Grenzen der Physik, wie wir sie heute kennen, verschieben würden.“

Das Standardmodell führt den Aufbau der Materie auf einige wenige Bausteine zurück. Aus den Materieteilchen (Quarks, Elektronen und Neutrinos) setzen sich die Atomkerne und Atome zusammen, aus denen auch wir alle bestehen. Den Kleber, der die Welt zusammenhält, bilden die Kraft- oder Wechselwirkungsteilchen (z.B. die Photonen bzw. Lichtteilchen). Dazu gehört etwa auch das Higgs-Teilchen, dessen Vorhersage im Jahr 2013 mit dem Nobelpreis ausgezeichnet wurde. Nur durch die Interaktion mit dem Higgs-Boson ist erklärlich, wie einige der Teilchen zu ihrer Masse kommen. Das Standardmodell kann damit eigentlich als komplett gelten.

Bausteine der Dunklen Materie

Als Dunkle-Materie-Teilchen scheint keiner der bekannten Kandidaten in Frage zu kommen. So ist die Suche nach diesen Teilchen wie die berühmte Suche nach der Nadel im Heuhaufen. „Wir kennen weder die Nadel, also das Teilchen, noch den Heuhaufen, d.h. seinen Aufenthaltsort in der Unendlichkeit des Universums; vermutet wird aber eine Konzentration in Galaxien “, so Professor Kämpfer. „Unsere Detektoren, die wir eigens für das riesige HADES-Spektrometer am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt entwickelt und gebaut haben, helfen bei dieser Suche. Sie können einzelne Spuren, die aus dem Zusammenprall von Teilchen herrühren, sehr genau detektieren.“

Für die Physiker, die sich in der europäischen HADES-Kollaboration (High-Acceptance Di-Electron Spectrometer) zusammengeschlossen haben, galt das Dunkle Photon als vielversprechender Kandidat für ein Dunkle-Materie-Teilchen. Dieses wird auch U-Boson genannt, was mit der sogenannten „U"-Symmetrie zusammenhängt. Sie macht das Dunkle Photon einerseits zu einem Doppelgänger „normaler“ Lichtteilchen, ermöglicht ihm andererseits aber auch, in eine sehr schwache Wechselwirkung mit normaler Materie zu treten.

Daher gehen die Wissenschaftler davon aus, dass das Dunkle Photon genau wie ein gewöhnliches Photon in ein Elektron-Positron-Paar zerfallen muss. Mit dem Dunklen Photon war die Nadel also vorerst theoretisch identifiziert, als Heuhaufen entpuppten sich spezifische Verteilungen von Elektron-Positron-Paaren, die bei der Kollision von Teilchen an einem großen Beschleuniger entstehen. Messsignale am HADES-Detektor im Ergebnis aktueller Experimente enttäuschten nun aber die Erwartung der Physiker. Es fand sich nicht die allerkleinste Spur eines Dunklen Photons.

Das HADES-Experiment

Ein bewährtes Mittel zur Erzeugung von Elektron-Positron-Paaren ist es, verschiedene Teilchen zu beschleunigen und mit sehr hoher Geschwindigkeit aufeinanderprallen zu lassen. In den Experimenten kommen Strahlen aus Protonen, Deuteronen (diese setzen sich aus einem Neutron und einem Proton zusammen) oder Atomkernen zum Einsatz, die auf Ziel-Protonen oder -Kerne treffen.

Tritt das seltene Ereignis ein und ein Elektron-Positron-Paar entsteht, können Wissenschaftler dies als messbares Signal detektieren, etwa mit dem einmaligen Detektorsystem HADES. Die im HZDR gebauten Detektoren für HADES bestehen aus sechs Ebenen mit einem dichten Netz aus Drähten zum Aufspüren von geladenen Teilchen. Diese Drähte besitzen eine Positionsgenauigkeit von 25 Mikrometern (ein Mikrometer entspricht einem Tausendstel Millimeter), und das bei einer Dicke, die dem Durchmesser eines menschlichen Haares entspricht. Das HADES-System hat bislang etwa zehn Milliarden analysierbare Ereignisse gesammelt.

Internationale Beschleunigerkonferenz in Dresden

Vom 15. bis zum 20. Juni 2014 findet in Dresden die „International Particle Accelerator Conference (IPAC)“ statt. Etwa 1.500 Beschleunigerphysiker und Detektorexperten aus Europa, Amerika und Asien werden erwartet, wobei Vertreter aller großen Beschleunigerzentren zugegen sein werden. Für die Ausrichtung vor Ort ist das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) zuständig. An der Organisation beteiligen sich zudem das Helmholtz-Zentrum Berlin, das Deutsche Elektronen-Synchrotron DESY und natürlich das Helmholtzzentrum für Schwerionenforschung GSI aus Darmstadt.

Publikation: G. Agakishiev u.a. (HADES Collaboration), Phys. Lett. B 731, 265 (2014), DOI-Link: http://dx.doi.org/10.1016/j.physletb.2014.02.035

Ansprechpartner für weiterführende Informationen:
Prof. Dr. Burkhard Kämpfer
Institut für Strahlenphysik am HZDR
Tel.: +49 351 260 3258 | b.kaempfer@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260 - 2450 oder +49 160 969 288 56
E-Mail c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.
Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise