Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HADES und die Suche nach der Dunklen Materie

05.05.2014

Obwohl sie das Weltall dominieren, kennt niemand ihre genaue Beschaffenheit: Dunkle Materie und Dunkle Energie. Im HADES-Experiment fahnden Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Physikern aus 17 europäischen Instituten nach „dem Teilchen“, das die Dunkle Materie erklären soll. Wie kürzlich in der Fachzeitschrift "Physics Letters B" berichtet, scheidet das Dunkle Photon, auch U-Boson genannt, als möglicher Kandidat zunächst aus.

Die wohl größten Rätsel in der Astrophysik sind die Dunkle Energie und die Dunkle Materie. Die Dunkle Energie macht 75 Prozent des Universums und die Dunkle Materie etwa 20 Prozent aus; die uns bekannte Welt beschränkt sich damit auf lediglich rund fünf Prozent der Materie.


Mit dem HADES-Detektor an GSI in Darmstadt suchen Wissenschaftler nach der Dunklen Materie.

3D Rendering-Modell: A. Schmah/HADES

Ohne Dunkle Energie und Materie können weder die Ausdehnung des Universums noch dessen Dichteverteilung – und damit Strukturen wie Galaxien, Sterne, Planeten und andere kompakte Objekte – erklärt werden. Dabei ist die Existenz von Dunkler Energie und Dunkler Materie nur theoretisch; einen direkten Nachweis gibt es bislang nicht. Antworten erhofften sich Wissenschaftler durch das Aufspüren unbekannter Teilchen, die nicht in das Standardmodell der Teilchenphysik passen.

„Das negative Resultat der aktuellen HADES-Experimente ist sehr wichtig, denn es zeigt, dass wir die Dunkle Materie auch in minimalen Abweichungen innerhalb des Standardmodells suchen müssen“, erläutert Professor Burkhard Kämpfer, Leiter der Hadronenphysik-Gruppe am Dresdner Helmholtz-Zentrum. Eine neue heiße Spur liefern etwa die magnetischen Momente der Myonen – das sind Elementarteilchen, die den Elektronen ähneln. Professor Kämpfer: „Bei hochpräzisen Experimenten wurden Hinweise auf Diskrepanzen des Standardmodelles entdeckt, womit sich die Grenzen der Physik, wie wir sie heute kennen, verschieben würden.“

Das Standardmodell führt den Aufbau der Materie auf einige wenige Bausteine zurück. Aus den Materieteilchen (Quarks, Elektronen und Neutrinos) setzen sich die Atomkerne und Atome zusammen, aus denen auch wir alle bestehen. Den Kleber, der die Welt zusammenhält, bilden die Kraft- oder Wechselwirkungsteilchen (z.B. die Photonen bzw. Lichtteilchen). Dazu gehört etwa auch das Higgs-Teilchen, dessen Vorhersage im Jahr 2013 mit dem Nobelpreis ausgezeichnet wurde. Nur durch die Interaktion mit dem Higgs-Boson ist erklärlich, wie einige der Teilchen zu ihrer Masse kommen. Das Standardmodell kann damit eigentlich als komplett gelten.

Bausteine der Dunklen Materie

Als Dunkle-Materie-Teilchen scheint keiner der bekannten Kandidaten in Frage zu kommen. So ist die Suche nach diesen Teilchen wie die berühmte Suche nach der Nadel im Heuhaufen. „Wir kennen weder die Nadel, also das Teilchen, noch den Heuhaufen, d.h. seinen Aufenthaltsort in der Unendlichkeit des Universums; vermutet wird aber eine Konzentration in Galaxien “, so Professor Kämpfer. „Unsere Detektoren, die wir eigens für das riesige HADES-Spektrometer am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt entwickelt und gebaut haben, helfen bei dieser Suche. Sie können einzelne Spuren, die aus dem Zusammenprall von Teilchen herrühren, sehr genau detektieren.“

Für die Physiker, die sich in der europäischen HADES-Kollaboration (High-Acceptance Di-Electron Spectrometer) zusammengeschlossen haben, galt das Dunkle Photon als vielversprechender Kandidat für ein Dunkle-Materie-Teilchen. Dieses wird auch U-Boson genannt, was mit der sogenannten „U"-Symmetrie zusammenhängt. Sie macht das Dunkle Photon einerseits zu einem Doppelgänger „normaler“ Lichtteilchen, ermöglicht ihm andererseits aber auch, in eine sehr schwache Wechselwirkung mit normaler Materie zu treten.

Daher gehen die Wissenschaftler davon aus, dass das Dunkle Photon genau wie ein gewöhnliches Photon in ein Elektron-Positron-Paar zerfallen muss. Mit dem Dunklen Photon war die Nadel also vorerst theoretisch identifiziert, als Heuhaufen entpuppten sich spezifische Verteilungen von Elektron-Positron-Paaren, die bei der Kollision von Teilchen an einem großen Beschleuniger entstehen. Messsignale am HADES-Detektor im Ergebnis aktueller Experimente enttäuschten nun aber die Erwartung der Physiker. Es fand sich nicht die allerkleinste Spur eines Dunklen Photons.

Das HADES-Experiment

Ein bewährtes Mittel zur Erzeugung von Elektron-Positron-Paaren ist es, verschiedene Teilchen zu beschleunigen und mit sehr hoher Geschwindigkeit aufeinanderprallen zu lassen. In den Experimenten kommen Strahlen aus Protonen, Deuteronen (diese setzen sich aus einem Neutron und einem Proton zusammen) oder Atomkernen zum Einsatz, die auf Ziel-Protonen oder -Kerne treffen.

Tritt das seltene Ereignis ein und ein Elektron-Positron-Paar entsteht, können Wissenschaftler dies als messbares Signal detektieren, etwa mit dem einmaligen Detektorsystem HADES. Die im HZDR gebauten Detektoren für HADES bestehen aus sechs Ebenen mit einem dichten Netz aus Drähten zum Aufspüren von geladenen Teilchen. Diese Drähte besitzen eine Positionsgenauigkeit von 25 Mikrometern (ein Mikrometer entspricht einem Tausendstel Millimeter), und das bei einer Dicke, die dem Durchmesser eines menschlichen Haares entspricht. Das HADES-System hat bislang etwa zehn Milliarden analysierbare Ereignisse gesammelt.

Internationale Beschleunigerkonferenz in Dresden

Vom 15. bis zum 20. Juni 2014 findet in Dresden die „International Particle Accelerator Conference (IPAC)“ statt. Etwa 1.500 Beschleunigerphysiker und Detektorexperten aus Europa, Amerika und Asien werden erwartet, wobei Vertreter aller großen Beschleunigerzentren zugegen sein werden. Für die Ausrichtung vor Ort ist das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) zuständig. An der Organisation beteiligen sich zudem das Helmholtz-Zentrum Berlin, das Deutsche Elektronen-Synchrotron DESY und natürlich das Helmholtzzentrum für Schwerionenforschung GSI aus Darmstadt.

Publikation: G. Agakishiev u.a. (HADES Collaboration), Phys. Lett. B 731, 265 (2014), DOI-Link: http://dx.doi.org/10.1016/j.physletb.2014.02.035

Ansprechpartner für weiterführende Informationen:
Prof. Dr. Burkhard Kämpfer
Institut für Strahlenphysik am HZDR
Tel.: +49 351 260 3258 | b.kaempfer@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260 - 2450 oder +49 160 969 288 56
E-Mail c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.
Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte