Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

H.E.S.S. sieht kosmischen „Dunst“ - extragalaktisches kosmisches Hintergrundlicht vermessen

23.01.2013
Wissenschaftlern der H.E.S.S.-Kollaboration gelangen Messungen der Intensität des diffusen extragalaktischen Hintergrundlichts im nahen Universum. Dies ist ein „Dunst“ aus Photonen, der das Universum seit seiner Entstehung ausfüllt.
Dazu analysierten sie die mit dem H.E.S.S.-Teleskopsystem in Namibia aufgenommenen Daten einiger der hellsten Gammastrahlenquellen außerhalb der Milchstraße. Aus den Ergebnissen lassen sich Schlüsse ziehen über die Entwicklung von Sternen und Galaxien. Und es lässt sich daraus ableiten, wie weit man im Gammalicht ins Universum blicken kann. (Astronomy & Astrophysics, 15.01.2013 online)

Der Raum zwischen den Galaxien ist angefüllt mit Photonen (Lichtteilchen), die von allen jemals im Universum existierenden Sternen emittiert wurden. Das diffuse extragalaktische Hintergrundlicht scheint im Sichtbaren und im Infrarot. Es ist nach dem kosmischen Mikrowellenhintergrund die diffuse Strahlung mit der zweithöchsten Intensität. Aus unserer Milchstraße heraus ist es aber nur schlecht möglich, dieses fossile Licht direkt zu beobachten. Durch Verwendung von Gammastrahlen (die rund eine Billion mal energiereicher sind als sichtbares Licht), also mit einer indirekten Methode, umgehen die Astrophysiker dieses Problem.

Ein von einer entfernten Galaxie emittierter Gammastrahl wird auf seinem Weg zur Erde durch Wechselwirkung mit diffusem Licht abgeschwächt: wenn ein hochenergetisches Gammaphoton mit einem Photon des Hintergrundlichts zusammenstößt, werden beide in ein Elektron/Positron-Paar umgewandelt (ein Positron ist das Antiteilchen des Elektrons), wodurch sich die Intensität des Gammastrahls verringert. Je dichter der Dunst aus diffusen Photonen ist, desto stärker ist die Abschwächung des Gammastrahls und desto weniger weit kann man im Gammalicht ins Universum blicken. Die an der Erde ankommenden hochenergetischen Gammaphotonen lösen in der Erdatmosphäre Teilchenschauer aus, die kurze Lichtblitze erzeugen. Diese werden von den Teleskopen des High Energy Stereoscopic System (H.E.S.S.) beobachtet.

Die Astrophysiker analysierten die Spektren einiger relativ naher Blazare; das sind hell im Gammalicht leuchtende Galaxien, in deren Zentrum ein aktives Schwarzes Loch Materie verschlingt, wobei ein „Jet“ aus relativistischen Teilchen in Richtung Erde geschleudert wird. Dabei zeigte sich klar die Absorption hochenergetischer Gammastrahlen durch das extragalaktische Hintergrundlicht – deren Berücksichtigung ist zur Erklärung der Spektren sogar unerlässlich. Die Messungen liefern die bisher genauesten Werte für die Intensität des im Universum enthaltenen Sternenlichts im sichtbaren und infraroten Bereich und seine spektrale Verteilung.

Ein besseres Verständnis dieses diffusen Lichts – ein Archiv des leuchtenden Universums – führt zu neuen Erkenntnissen über die ersten Sterne, ihre Entstehung und die Entwicklung von Galaxien. Mit den neuen Daten können nun kosmologische Modelle optimiert werden, um die Rate und die Prozesse der Sternbildung seit der Entstehung des Universums besser zu beschreiben. Und aus den Ergebnissen lässt sich bestimmen, wie die Größe des im Gammalicht beobachtbaren Universums mit zunehmender Energie der Gammaphotonen abnimmt.

Komplementäre Messungen an weiter entfernten Blazaren wurden von der Fermi-LAT-Kollaboration mit dem Large Area Telescope (LAT) auf dem Fermi-Satelliten gemacht, das Gammastrahlen mit niedrigerer Energie detektiert [1].

Originalveröffentlichung:
Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S., H.E.S.S. Collaboration, Astronomy & Astrophysics 550, A4 (2013) http://dx.doi.org/10.1051/0004-6361/201220355

[1] The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars, Fermi-LAT Collaboration, Science 338, 1190-1192 (2012) DOI: 10.1126/science.1227160 http://www.sciencemag.org/content/338/6111/1190

Kontakt:
Prof. Dr. Werner Hofmann
Tel.: 06221 516330
E-Mail: werner.hofmann@mpi-hd.mpg.de

Dr. David Sanchez
Tel.: 06221 516268
E-Mail: david.sanchez@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2013/01/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften