Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie am Gummiband

17.01.2013
Wissenschaftler der Universität Bonn berechneten anhand von „R136“, wie Sternhaufen entstehen.
Eigentlich müssten die Gebilde explosionsartig auseinanderfliegen, weil die jungen Sterne das Gas in dem Haufen sehr stark aufheizen und herausblasen. Die Eigengravitation wirkt aber wie ein Gummiband, welches den aufgeblähten Sternhaufen wieder zusammenzieht. Wie dies genau geschieht, hängt von der Schwere der Sterne in dem Haufen ab. Die Ergebnisse werden nun in „The Astrophysical Journal“ vorgestellt.

Wie entstehen Sternhaufen? Astronomen zerbrechen sich über diese Frage schon seit Jahrzehnten die Köpfe. „Eine weithin akzeptierte Vorstellung besagt, dass sich das Gas in einer Galaxie an einem Ort verdichten kann“, sagt Dr. Sambaran Banerjee vom Argelander-Institut für Astronomie (AIfA) der Universität Bonn. Das Gas kühlt ab, bildet dabei Moleküle und kann unter der Eigengravitation zusammenfallen. In einer solchen Wolke kommt es zu Schwankungen in der Moleküldichte, wodurch Protosterne entstehen können. Das Gesamtgebilde fügt sich zu einem Sternhaufen zusammen, die typischerweise sehr kompakt sind und bis zu mehrere Millionen Sterne enthalten können. Die vielen jungen Sterne heizen das Gas im Sternhaufen auf, bis es diesen explosionsartig verlässt. „Der junge Sternhaufen stößt auf diese Weise rund 70 Prozent der Gesamtmasse aus“, berichtet Prof. Dr. Pavel Kroupa (AIfA). „Sehr junge Haufen müssten also auseinanderfliegen.“ Allerdings wird dieses Szenario durch neueste Beobachtungen in Frage gestellt.

Sind die Sternhaufen ganz anders entstanden als bisher gedacht?

Ein internationales Team unter der Leitung von Vincent Henault-Brunet (Astronomisches Institut der Universität Edinburgh) hat die Bewegungen der Sterne in dem außerordentlich schweren jungen Sternhaufen „R136“ vermessen und in einer eigenen Publikation vorgestellt
http://www.aanda.org/index.php?option=com_article&access=standard&Itemid=
129&url=/articles/aa/full_html/2012/10/aa19471-12/aa19471-12.html
Das Gebilde ist etwa 150.000 Lichtjahre von der Erde entfernt und weniger als drei Millionen Jahre alt. Der Sternhaufen wiegt etwa 100.000 Sonnen, ist also so schwer wie ein Kugelsternhaufen und befindet sich in unserer Nachbargalaxie, der Großen Magellanschen Wolke. „Die Messungen zeigen, dass die Sterne sich mit Geschwindigkeiten von rund 16.000 Stundenkilometer bewegen – deutlich langsamer als die Theorie vorhersagt“, erläutert Dr. Banerjee. R136 scheint also nicht auseinanderzufliegen. Stimmt die Theorie also nicht? Ist dieser Sternhaufen ganz anders entstanden als bisher gedacht? „Wenn es so wäre, hätte dies bedeutende Auswirkungen auf große Bereiche der Astrophysik, etwa darauf, wie Sterne sich von Geburt aus in eine Galaxie hineinbewegen“, sagt Prof. Kroupa.

Die Forscher berechneten das Schicksal des Sternhaufens „R136“

Die Forscher vom Argelander-Institut für Astronomie der Universität Bonn berechneten mit Supercomputern die Entwicklung des Sternhaufens „R136“. Dazu lösten sie unzählige Differentialgleichungen, welche die Bewegung jedes Sternes bestimmen, und berücksichtigten insbesondere die Reaktion der Sterne auf den Ausfluss des aufgeheizten Gases aus dem jungen Sternhaufen. „Die Berechnungen zeigen, dass der Sternhaufen deutlich auf den Gasauswurf reagierte, indem er sich aufblähte“, berichtet Dr. Banerjee. Allerdings zog sich ein bedeutender Teil wieder schnell – binnen etwa einer Million Jahre – zusammen. „Ursache war die Eigengravitation“, sagt Prof. Kroupa. „Deswegen ist der Haufen heute tatsächlich im Gleichgewicht, genau wie die Messungen zeigen.“ Obwohl sich die Sterne in dem Haufen auf chaotischen Bahnen umeinander bewegen, verändert das Gebilde nicht mehr seine Größe.

Eigengravitation wirkt wie ein Gummiband

Bei einem schweren Sternhaufen wirkt die Gravitation wie ein sehr steifes Gummiband, welches sich sehr schnell wieder zusammenzieht, nachdem man es dehnt und loslässt. Bei einem leichteren Sternhaufen, wie etwa dem nur etwa eine Millionen Jahre alten Haufen NGC 3603 in unserer Milchstraße, hingegen wirkt die Eigengravitation wie ein schwaches Gummiband - und solch ein Haufen braucht viel länger, um wieder ins Gleichgewicht zurückzukehren. Viele der kleinen Sternhaufen schaffen dies nie und lösen sich vollständig auf. Prof. Kroupa: „Wir konnten zeigen, dass die Theorie, wie Sternhaufen entstehen, nach wie vor stimmt, und zeigten dabei zum ersten Mal, wie schnell sich schwere Sternhaufen zusammenziehen können.“

Publikation: Did the infant R136 and NGC 3603 clusters undergo residual gas-expulsion? The Astrophysical Journal

Kontakt:

Dr. Sambaran Banerjee
Argelander-Institut für Astronomie
Mobil: 0151/40519254
Tel. 0228/733461
E-Mail: sambaran@astro.uni-bonn.de

Prof. Dr. Pavel Kroupa
Argelander-Institut für Astronomie
Tel. 0228/736140
Mobil: 0177/9566127
E-Mail: pavel@astro.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://arxiv.org/abs/1301.3491
http://www.astro.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie