Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Großes Staunen über kleine Kristalle

29.11.2011
Winzige Kristalle verblüffen mit unerwarteten Eigenschaften – Forschungsteams der TU Wien und der indischen Universität Kolkata erklären nun warum.

Ein kleines Stück Eisendraht ist magnetisch - genau wie eine große Eisenstange. Auf die Größe kommt es bei Materialeigenschaften normalerweise nicht an. Überraschenderweise entdeckte man nun aber in einem österreichisch-indischen Forschungsprojekt, dass bestimmte Materialien plötzlich ganz ungewohnte Eigenschaften zeigen, wenn man sie in Form winziger Kristalle untersucht. Das soll in Zukunft zu Werkstoffen mit maßgeschneiderten elektrischen und magnetischen Eigenschaften führen.


Magnetismus - im Großen und im Kleinen
TU Wien

Materialeigenschafen durch die Größe auf den Kopf stellen

Materialeigenschaften wie elektrische Leitfähigkeit, magnetische Eigenschaften oder auch Schmelz- und Siedetemperatur hängen nicht von Größe und Form eines Objekts ab. „Ein Experiment in Indien lieferte kürzlich allerdings Hinweise, dass bestimmte Manganoxide, die sogenannten Manganate, plötzlich ganz andere Eigenschaften zeigen, wenn sie in Form von winzigsten Körnchen vorliegen“, berichtet Karsten Held.

Ein Forschungsteam der TU Wien und der Universität Kolkata in Indien untersuchte dieses Phänomen daher nun näher – und konnte den neuen Effekt mit Hilfe von Computersimulationen erklären. Geht man zu immer kleineren Kristallen über, ändert sich die Verteilung der Elektronen und ihre Energie - und dadurch ändern sich auch die elektromagnetischen Eigenschaften des Kristalls. „Wichtig ist hier auch das Phänomen der Quanten-Verschränkung“, erklärt Karsten Held. „Man kann sich hier die Elektronen nicht mehr wie klassische Teilchen vorstellen, die sich unabhängig auf getrennten Pfaden bewegen, die Elektronen können nur gemeinsam beschrieben werden.“

Durch Änderung der Größe können die Eigenschaften von Manganat-Kristallen nun gezielt geändert werden. Größere Kristalle können keinen Strom leiten und sind auch nicht magnetisch. Betrachtet man hingegen winzige Kristallstückchen, stellen sich diese erstaunlicherweise als metallische Ferromagneten heraus.

Interessant für die Industrie

In der Technik spielen Phasenübergänge, bei denen sich wichtige Materialeigenschaften ändern eine große Rolle: „Wenn von einer Computerfestplatte durch den Lesekopf Daten ausgelesen werden, geschieht das durch einen Übergang zwischen einem stromleitenden und einem nicht stromleitenden Zustand“, erklärt Karsten Held. Ganz ähnliche Vorgänge sind in den Manganat-Kristallen zu sehen: „Es war klar, dass die magnetischen Eigenschaften von Manganaten von der Temperatur und vom Magnetfeld abhängen“, sagt Tanusri Saha-Dasgupta, Materialforscherin der Universität Kolkata. „Doch nun wissen wir, dass diese Übergänge auch durch eine Veränderung der Kristallgröße kontrollierbar werden.“ Man kann durch gezielte Veränderung der Kristallgröße also beeinflussen, bei welchen äußeren Bedingungen die Manganat-Kristalle ihre Eigenschaften wechseln. Für technische Bauteile liefert das aufregende neue Möglichkeiten.

Gewaltiger Rechenaufwand

Nur drei bis fünfzehn Milliardstel Meter messen die Manganat-Kristalle, die von dem österreichisch-indischen Forschungsteam untersucht wurden – doch immer noch bestehen sie aus hunderten oder tausenden Atomen. Sie am Computer zu simulieren ist daher eine gewaltige Herausforderung. „Nur mit besonders leistungsfähigen Computerclustern kann man die quantenphysikalischen Gleichungen lösen, mit denen wir es hier zu tun haben“, sagt Doktorand Angelo Valli. „Zum Glück sind wir an der TU Wien mit dem Großrechner VSC in diesem Punkt sehr gut ausgestattet.“

Europäisch-Indische Kooperation

Die Forschungsarbeit entstand innerhalb des Monami-Projektes, in dem die Zusammenarbeit von europäischen und indischen Forschungsgruppen im Bereich der comptergestützten Materialwissenschaft gefördert wird - beispielsweise der Auslandsaufenthalt von Angelo Valli in Kolkata. „Sowohl auf europäischer als auch auf indischer Seite gibt es hier sehr starke Forschungsgruppen – durch eine dauerhafte Zusammenarbeit profitieren alle Beteiligten“, sind sich Karsten Held und Tanusri Saha-Dasgupta einig.

Rückfragehinweis:
Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://prl.aps.org/abstract/PRL/v107/i19/e197202
http://www.iacs.res.in/monami/Home.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise