Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Großer Rechner für kleine Teilchen: Wilson simuliert Kräftespiel im Atomkern

02.02.2009
Neue PC-Clusteranlage am Institut für Kernphysik für 1,3 Millionen Euro aufgebaut. Wechselwirkung zwischen Quarks und Gluonen im Fokus.

Immer weiter dringt die Kernphysik ins Innere der Materie vor und entdeckt neue Teilchen oder hofft, sie zu finden. Die Anlagen dazu werden immer größer und haben in Mainz mit dem Ausbau des Elektronenbeschleunigers MAMI Ende des Jahres 2006 einen Höhepunkt erreicht.

Aber nicht nur die experimentellen Einrichtungen nehmen an Größe zu, sondern auch die Computeranlagen, die dazu dienen, solche Experimente zu begleiten. Eine Rechneranlage der Superlative haben die Wissenschaftler am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz am Freitag bei einer Einweihungsfeier der Öffentlichkeit vorgestellt: "Wilson", so der Name der Maschine, besteht aus 2240 Prozessoren, die miteinander verknüpft sind und gemeinsam an einer Aufgabe arbeiten. In einer Sekunde können so nicht weniger als vier Billionen Rechenschritte gelöst werden.

"Die neue Rechneranlage bettet sich in idealer Weise in das im Juni 2008 gestartete Forschungszentrum Elementarkräfte und mathematische Grundlagen ein, mit dem die Physik der Universität Mainz in die Forschungsinitiative des Landes einbezogen ist", erklärte Ministerialdirigentin Brigitte Klempt, Leiterin der Abteilung "Forschung und Technologie" im Ministerium für Bildung, Wissenschaft, Jugend und Kultur. "Das Zentrum basiert auf besonderen Stärken der Mainzer Physikforschung, für die es gute Voraussetzungen gibt, auch in der internationalen Konkurrenz erfolgreich zu bestehen", sagte sie.

"Mit dieser außergewöhnlichen Rechenanlage wurden am Institut für Kernphysik die Voraussetzungen geschaffen, um die Experimente am Elektronenbeschleuniger MAMI optimal zu begleiten und zu interpretieren", erklärte der Präsident der Johannes Gutenberg-Universität Mainz, Univ.-Prof. Dr. Georg Krausch. "Darüber hinaus werden aber auch experimentelle Untersuchungen an anderen Einrichtungen, die sich beispielsweise mit der Existenz neuer Materieformen befassen, künftig durch Rechnungen aus Mainz unterstützt." Die Physiker interessieren sich dabei insbesondere für die Kräfte, die zwischen den kleinsten bekannten Teilchen, den Quarks, wirken. Diese Kräfte entstehen durch sogenannte Gluonen, die zwischen den Quarks ausgetauscht werden.

Wilson wurde im Mai 2008 in Einzelteilen angeliefert und während vier Tagen in zwei Schrankreihen von jeweils 3,60 Meter Länge und zwei Meter Höhe eingebaut. Für die Klimaanlage, deren Leistung 650 haushaltsüblichen Kühlschränken entspricht, musste der Raum zuvor komplett umgebaut werden. Die Kosten für die Anlage betrugen 1,1 Millionen Euro, die im Rahmen des ehemaligen Hochschulbauförderungsgesetzes (HBFG) aus Bundes- und Landesmitteln sowie aus Mitteln der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt bereitgestellt wurden. Weitere 200.000 Euro fielen für den Umbau der Räume und die Kühlanlage an. Nachdem die anfänglichen technischen Schwierigkeiten überwunden sind, kann die Anlage nun zeigen, was in ihr steckt.

Das Interesse der Wissenschaftler gilt dem inneren Aufbau von Protonen und Neutronen, die den Atomkern bilden und die ihrerseits aus den noch kleineren Quarks bestehen. Der starke Zusammenhalt im Innern eines Atomkerns beruht auf der starken Wechselwirkung, eine der vier fundamentalen Kräfte in der Physik. Diese Kraft wirkt durch den Austausch von Gluonen auf die Quarks ein, wobei acht verschiedene Gluonen bekannt sind, die zwischen den Quarks hin- und herwechseln. Zur Beschreibung dieses Kräftespiels dient die Theorie der Quantenchromodynamik (QCD). Wie sich jedoch die unmittelbaren Eigenschaften von Protonen und Neutronen aus der Quantenchromodynamik ableiten lassen, ist noch weitgehend unverstanden - und hier setzen die Arbeiten der Mainzer Kernphysiker an.

"Wir können jetzt mit dem neuen Hochleistungsrechner eine noch recht junge,
aber sehr erfolgversprechende Methode anwenden, um bestimmte Vorgänge im Innern der Atomkerne zu simulieren", erklärte Univ.-Prof. Dr. Hartmut Wittig vom Institut für Kernphysik der Universität Mainz. "Dabei werden die Wechselwirkungen zwischen den Quarks und den Gluonen nicht in den üblichen vier Dimensionen von Raum und Zeit beschrieben, sondern sie werden auf ein Raumzeit-Gitter ähnlich einem Kristallgitter in der Festkörperphysik übertragen." Wittig zufolge ist die Gitter-Quantenchromodynamik eine der erfolgversprechendsten Methoden, um experimentelle Entdeckungen über die Eigenschaften von subatomaren Teilchen theoretisch zu überprüfen und zu ergänzen.
Kontakt und Informationen:
Univ.-Prof. Dr. rer. nat. Hartmut Wittig
Theoretische Kernphysik
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-26808
Fax 06131 39-25474
E-Mail: wittig@kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kph.uni-mainz.de/T/230.php
http://www.uni-mainz.de/presse/22237.php

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die „dunkle“ Seite der Spin-Physik
16.01.2018 | Technische Universität Berlin

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften