Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie groß ist klein?

04.06.2010
PTB-Wissenschaftler entwickeln genaues und rückführbares Messverfahren für Nanopartikel

Ob in kosmetischen Produkten wie Sonnencreme, Zahnpasta oder Deodorant, ob in Farben und Lacken oder in der Krebstherapie: Nanopartikel sind weit verbreitet und bieten vielfältige Anwendungsmöglichkeiten. Gleichzeitig sind die Risiken schwer abzuschätzen, die von diesen kleinen Teilchen während ihrer Herstellung, Verwendung und Entsorgung ausgehen.

Denn durch ihre winzigen Ausmaße haben sie völlig andere chemische und physikalische Eigenschaften als größere Partikel oder Festkörper des gleichen Materials. Um ihre winzige Größe exakt zu ermitteln, haben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) ein elektronenmikroskopisches Messverfahren für die Größe von Nanopartikeln entwickelt. Es ermöglicht eine rückführbare Messung und kann Größenunterschiede bis zu einem Nanometer präzise ermitteln. Das neuartige Verfahren könnte zur Zertifizierung von Referenzmaterialien in der Europäischen Union beitragen, damit in Zukunft die Größe von Nanopartikeln einheitlich und genau bestimmt werden kann.

Die Wirkung von Nanopartikeln auf die Organe des Menschen oder die Umwelt ist bisher kaum untersucht worden. Ihr Verhalten ist in hohem Maß von ihrer Teilchengröße abhängig: Ein Partikel von 18 Nanometern Größe kann ganz andere Eigenschaften haben als ein 35 oder 160 Nanometer großes. Der Größenunterschied spielt dementsprechend eine wichtige Rolle bei der Abschätzung des Risikos dieser „Zwergpartikel“ für Mensch und Umwelt. Gleichzeitig bieten solch größenabhängige Eigenschaften die Möglichkeit zu vielfältigen technologischen Anwendungen. Ob nun Gesundheit- und Umweltrisiko oder technologischer Nutzen.– die Größe der Nanopartikel genau zu kennen, ist in jedem Fall wichtig.

Daher hat die PTB ein neues Messverfahren für Nanopartikel entwickelt. Es vereint die Vorteile verschiedener Typen von Elektronenmikroskopen: Wissenschaftler rüsteten ein Rasterelektronenmikroskop (REM) mit einem Transmissionsdetektor auf. Dieser Aufbau ist weitaus kostengünstiger als ein Transmissionselektronenmikroskop (TEM). Mit Hilfe des Transmissionsdetektors können die Partikelgrenzen in vielen Fällen genauer dargestellt werden als mit einem konventionellen REM.

Ein Problem bei der hochgenauen Messung von Nanopartikeln ist die präzise Bestimmung des Partikelrandes, der in elektronenmikroskopischen Bildern „verschmiert“ ist. Bei welchem Grauwert beginnt das Partikel und welcher Bild-Pixel ist noch Hintergrund? Um diese Frage beantworten zu können, wird simuliert: Ein an der PTB entwickeltes Programm berechnet das Detektorsignal für ein Partikel einer festgelegten Größe, zum Beispiel 150 nm, und berücksichtigt dabei die Wechselwirkungen der Elektronen mit dem Partikel und die Eigenschaften des Detektors. Dann wird verglichen. Stimmt das berechnete Signal mit dem gemessenen überein, kann man aus der Simulation auf die reale Größe des untersuchten Teilchens schließen. Wenn nicht, wird mit einer anderen Teilchengröße weiter gerechnet, beispielsweise 151 nm, solange bis es eine Übereinstimmung beider Signale gibt.

Die PTB-Wissenschaftler untersuchten Vertreter aus den Materialklassen der Metalle, Keramiken und Kunststoffe und konnten zeigen, dass sich das Detektorsignal auch mit den Materialeigenschaften ändert. So wechselwirken die Elektronen beispielsweise mit dem sehr dichten Gold anders als mit Latex, das eine geringere Dichte hat. Die herkömmliche Herangehensweise, für alle Partikel dasselbe Kriterium für die Datenauswertung anzusetzen, egal um welches Material es sich handelt und wie groß sie sind, hat also ihre Schwächen.

Um sowohl Größe als auch Material der Partikel berücksichtigen zu können, hat die PTB eine automatische Auswertung entwickelt. Sie berechnet auf der Basis der Simulationsergebnisse für jeden einzelnen Partikel ein individuelles Detektorsignal für den Partikelrand. So wird eine an den jeweiligen Partikel angepasste, präzise Größenbestimmung ermöglicht. Trotz dieser aufwändigen Prozedur können mehrere hundert Aufnahmen in wenigen Minuten automatisch ausgewertet werden. Die PTB-Wissenschaftler haben außerdem eine Methode entwickelt, um viele Nanopartikel-Bilder nacheinander automatisch aufnehmen zu können. Somit sind sie nun in der Lage, durch das Messen und Auswerten bis zu einiger tausend Partikel eine Probe innerhalb eines Tages zu charakterisieren.

Das neue Messverfahren der PTB könnte dazu beitragen, innerhalb der europäischen Union zertifizierte Referenzmaterialien herzustellen. Referenzmaterialien dienen dazu, europaweit alle Messungen mit einem definierten Standard zu vergleichen. Nur auf diese Weise lassen sich Messergebnisse verschiedener Labore vereinheitlichen. ptb/msi

Originalveröffentlichung
E. Buhr, N. Senftleben, T. Klein, D. Bergmann, D. Gnieser, C.G. Frase, H. Bosse: Characterization of nanoparticles by scanning electron microscopy in transmission mode, Measurement Science and Technology, Vol. 20, 084025 (9p), 2009

Aktuelle Veröffentlichung ist in Arbeit.

Ansprechpartner
Tobias Klein, PTB-Arbeitsgruppe 4.22, Quantitative Mikroskopie,
Tel.: (0531) 592-4229, E-Mail: tobias.klein@ptb.de
Weitere aktuelle PTB-Nachrichten:
Schall macht Licht (31. Mai)
Besserer Strahlenschutz für schwangere Arzthelferinnen (17. Mai)
LED – Die Lampe der Zukunft? (12. Mai)
Kraft und Weg dynamisch und präzise messen (10. Mai)

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten