Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie groß ist klein?

04.06.2010
PTB-Wissenschaftler entwickeln genaues und rückführbares Messverfahren für Nanopartikel

Ob in kosmetischen Produkten wie Sonnencreme, Zahnpasta oder Deodorant, ob in Farben und Lacken oder in der Krebstherapie: Nanopartikel sind weit verbreitet und bieten vielfältige Anwendungsmöglichkeiten. Gleichzeitig sind die Risiken schwer abzuschätzen, die von diesen kleinen Teilchen während ihrer Herstellung, Verwendung und Entsorgung ausgehen.

Denn durch ihre winzigen Ausmaße haben sie völlig andere chemische und physikalische Eigenschaften als größere Partikel oder Festkörper des gleichen Materials. Um ihre winzige Größe exakt zu ermitteln, haben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) ein elektronenmikroskopisches Messverfahren für die Größe von Nanopartikeln entwickelt. Es ermöglicht eine rückführbare Messung und kann Größenunterschiede bis zu einem Nanometer präzise ermitteln. Das neuartige Verfahren könnte zur Zertifizierung von Referenzmaterialien in der Europäischen Union beitragen, damit in Zukunft die Größe von Nanopartikeln einheitlich und genau bestimmt werden kann.

Die Wirkung von Nanopartikeln auf die Organe des Menschen oder die Umwelt ist bisher kaum untersucht worden. Ihr Verhalten ist in hohem Maß von ihrer Teilchengröße abhängig: Ein Partikel von 18 Nanometern Größe kann ganz andere Eigenschaften haben als ein 35 oder 160 Nanometer großes. Der Größenunterschied spielt dementsprechend eine wichtige Rolle bei der Abschätzung des Risikos dieser „Zwergpartikel“ für Mensch und Umwelt. Gleichzeitig bieten solch größenabhängige Eigenschaften die Möglichkeit zu vielfältigen technologischen Anwendungen. Ob nun Gesundheit- und Umweltrisiko oder technologischer Nutzen.– die Größe der Nanopartikel genau zu kennen, ist in jedem Fall wichtig.

Daher hat die PTB ein neues Messverfahren für Nanopartikel entwickelt. Es vereint die Vorteile verschiedener Typen von Elektronenmikroskopen: Wissenschaftler rüsteten ein Rasterelektronenmikroskop (REM) mit einem Transmissionsdetektor auf. Dieser Aufbau ist weitaus kostengünstiger als ein Transmissionselektronenmikroskop (TEM). Mit Hilfe des Transmissionsdetektors können die Partikelgrenzen in vielen Fällen genauer dargestellt werden als mit einem konventionellen REM.

Ein Problem bei der hochgenauen Messung von Nanopartikeln ist die präzise Bestimmung des Partikelrandes, der in elektronenmikroskopischen Bildern „verschmiert“ ist. Bei welchem Grauwert beginnt das Partikel und welcher Bild-Pixel ist noch Hintergrund? Um diese Frage beantworten zu können, wird simuliert: Ein an der PTB entwickeltes Programm berechnet das Detektorsignal für ein Partikel einer festgelegten Größe, zum Beispiel 150 nm, und berücksichtigt dabei die Wechselwirkungen der Elektronen mit dem Partikel und die Eigenschaften des Detektors. Dann wird verglichen. Stimmt das berechnete Signal mit dem gemessenen überein, kann man aus der Simulation auf die reale Größe des untersuchten Teilchens schließen. Wenn nicht, wird mit einer anderen Teilchengröße weiter gerechnet, beispielsweise 151 nm, solange bis es eine Übereinstimmung beider Signale gibt.

Die PTB-Wissenschaftler untersuchten Vertreter aus den Materialklassen der Metalle, Keramiken und Kunststoffe und konnten zeigen, dass sich das Detektorsignal auch mit den Materialeigenschaften ändert. So wechselwirken die Elektronen beispielsweise mit dem sehr dichten Gold anders als mit Latex, das eine geringere Dichte hat. Die herkömmliche Herangehensweise, für alle Partikel dasselbe Kriterium für die Datenauswertung anzusetzen, egal um welches Material es sich handelt und wie groß sie sind, hat also ihre Schwächen.

Um sowohl Größe als auch Material der Partikel berücksichtigen zu können, hat die PTB eine automatische Auswertung entwickelt. Sie berechnet auf der Basis der Simulationsergebnisse für jeden einzelnen Partikel ein individuelles Detektorsignal für den Partikelrand. So wird eine an den jeweiligen Partikel angepasste, präzise Größenbestimmung ermöglicht. Trotz dieser aufwändigen Prozedur können mehrere hundert Aufnahmen in wenigen Minuten automatisch ausgewertet werden. Die PTB-Wissenschaftler haben außerdem eine Methode entwickelt, um viele Nanopartikel-Bilder nacheinander automatisch aufnehmen zu können. Somit sind sie nun in der Lage, durch das Messen und Auswerten bis zu einiger tausend Partikel eine Probe innerhalb eines Tages zu charakterisieren.

Das neue Messverfahren der PTB könnte dazu beitragen, innerhalb der europäischen Union zertifizierte Referenzmaterialien herzustellen. Referenzmaterialien dienen dazu, europaweit alle Messungen mit einem definierten Standard zu vergleichen. Nur auf diese Weise lassen sich Messergebnisse verschiedener Labore vereinheitlichen. ptb/msi

Originalveröffentlichung
E. Buhr, N. Senftleben, T. Klein, D. Bergmann, D. Gnieser, C.G. Frase, H. Bosse: Characterization of nanoparticles by scanning electron microscopy in transmission mode, Measurement Science and Technology, Vol. 20, 084025 (9p), 2009

Aktuelle Veröffentlichung ist in Arbeit.

Ansprechpartner
Tobias Klein, PTB-Arbeitsgruppe 4.22, Quantitative Mikroskopie,
Tel.: (0531) 592-4229, E-Mail: tobias.klein@ptb.de
Weitere aktuelle PTB-Nachrichten:
Schall macht Licht (31. Mai)
Besserer Strahlenschutz für schwangere Arzthelferinnen (17. Mai)
LED – Die Lampe der Zukunft? (12. Mai)
Kraft und Weg dynamisch und präzise messen (10. Mai)

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften