Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen auf Ladungsentzug

12.07.2010
Max-Planck-Forscher befreien Graphen von elektrischer Ladung, damit es seine Halbleiter-Eigenschaften zeigt

Immer kleiner, schneller und belastbarer - so soll die Zukunft der Elektronik aussehen. Forscher des Max-Planck-Instituts für Festkörperforschung in Stuttgart tragen mit aktuellen Arbeiten dazu bei, dass sich diese Hoffnung erfüllt. Sie haben Wege gefunden, Graphen von elektrischen Ladungen zu befreien. Graphen nennen Materialwissenschaftler Kohlenstoffschichten, die nicht dicker als eine oder einige wenige Atomlagen sind.


Wasserstoffatome drängeln sich in die Bindung zwischen Silicium (violett) und Graphen (blau). Anschließend liegt Graphen ungeladen und stabil auf der Unterlage. In der rechts eingeklinkten Bandstruktur erkennen die Forscher, dass monolagiges Graphen nach der Wasserstoffbehandlung nicht zum Halbleiter wird. Bild: Max-Planck-Institut für Festkörperforschung


Von metallischem zu halbleitendem Graphen: F4-TCNQ(oben) saugt die Ladung aus der Siliciumcarbid-Graphen-Verbindung (unten). In der Bandstruktur von mehrlagigem Graphen vergößert sich so die Bandlücke (rechtes Bild) - ein typisches Zeichen für einen Halbleiter. Bild: Max-Planck-Institut für Festkörperforschung

Einlagiges Graphen wird so zum Halbmetall, zweilagiges zeigt dann die Eigenschaften eines Halbleiters. Die Stuttgarter Forscher präparierten Graphen großflächig auf einer Unterlage aus Siliciumcarbid und beeinflussten seine Leitfähigkeit zum einen gezielt, indem sie an die Kohlenstoff-Blätter Moleküle der organischen Substanz F4-TCNQ hefteten. Zum anderen stellten sie das Material in einer Form her, in der es sich erst gar nicht elektrisch auflädt. Vor allem doppellagiges Graphen wird damit auch technisch interessant: Es könnte Silicium ersetzen, da es sich zu viel kleineren Transistoren, den elementaren Bauteilen eines Mikrochips, verarbeiten lässt. (Physical Review, 1. Juni 2010 und Physical Review Letters, 10. Dezember 2009)

Ein einfacher Weg nützt wenig, wenn er knapp am Ziel vorbeiführt. So lässt sich Graphen recht leicht in reiner Form und relativ großen Schichten auf einer Unterlage aus Siliciumcarbid abscheiden. Doch für weiterführende Experimente und die technischen Anwendungen, denen es einmal dienen soll, eignet es sich so nicht: Die Ladungsträger in ungeladenem einlagigem Graphen benehmen sich als ob sie keine Masse hätten. Die physikalischen Effekte, die dadurch entstehen, möchten Forscher in Zukunft genauer untersuchen. Zwei Lagen des vernetzten Kohlenstoffs sollen außerdem als Halbleiter einmal zu kleineren elektronischen Bauteilen verarbeitet werden, als sie sich aus Silicium herstellen lassen. Doch auf der Unterlage aus Siliciumcarbid lädt sich Graphen elektrisch auf, und wird so zum metallischen Leiter - für die Halbleiterindustrie sowie für weitere Untersuchungen der scheinbar masselosen Ladungsträger ist es damit unbrauchbar. Ulrich Starke und sein Team um Camilla Coletti und Christian Riedl am Max-Planck-Institut für Festkörperforschung in Stuttgart können das verhindern: Sie haben Mittel gefunden, das Graphen auf der Siliciumcarbid-Unterlage von seiner Ladung zu befreien.

Einer ihrer Ansätze packt das Problem da, wo es entsteht. Denn zwischen den Siliciumatomen der Unterlage und den Graphenschichten bilden sich chemische Bindungen. Das führt schließlich dazu, dass sich Ladung ins Graphen fließt. Diesen Ladungstransport unterbrechen die Stuttgarter Forscher, indem sie die Bindungen zwischen Graphen und Silicium kappen. Zu diesem Zweck leiten sie Wasserstoffgas über das Materialduo; die Wasserstoffatome drängeln sich mühelos zwischen die Siliciumatome und die Kohlenstoffblätter. "Auf diese Weise erhalten wir das Graphen stabil auf seiner Unterlage und gleichzeitig doch so lose, dass es ladungsfrei ist", sagt Christian Riedl. Auch mehrere Kohlenstofflagen können die Forscher auf dem Siliciumcarbid stapeln und deren Verbindung zur Unterlage trennen.

Die Stuttgarter Wissenschaftler haben aber auch einen Weg gefunden, das Graphen zu entladen, ohne es vom Siliciumcarbid zu entkoppeln. Sie dampften Tetrafluorotetracyanoquinodimethan (F4-TCNQ) auf das Graphen. Die Moleküle der organischen Fluorverbindung heften sich an das Graphen und saugen die Ladung von den Kohlenstoffschichten ab. Während die Forscher immer mehr Moleküle an die Oberfläche heften, wird einlagiges Graphen zum Halbmetall, nimmt aber nicht die elektronischen Eigenschaften eines Halbleiters an. Das erreichen die Forscher jedoch in zweilagigem Graphen, das sich mit einer zunehmenden F4-TCNQ-Beladung allmählich vom metallischen Leiter zum Halbleiter wandelt. "Mit unterschiedlichen Mengen F4-TCNQ können wir die Leiteigenschaften des Graphen präzise einstellen", sagt Camilla Coletti, die die Experimente vorgenommen hat. Wenn zweilagiges Graphen, das technisch viel verspricht, mit der größtmöglichen Menge F4-TCNQ bedeckt ist, behält es die Eigenschaften eines Halbleiters sogar noch bei 200 Grad Celsius.

Dokumentiert haben die Wissenschaftler den Wandel der elektronischen Eigenschaften, indem sie die Bandstruktur des Graphen bestimmten, und zwar sowohl nach der Behandlung mit Wasserstoff als auch für unterschiedliche Mengen F4-TCNQ, die sie auf dem Material ablagerten. Die Bandstruktur ist eine Art Fingerabdruck der elektronischen Struktur und verrät, mit welchen Energien die Elektronen in einem Material gebunden sind. Abbilden lässt sie sich mit einer Methode namens winkelaufgelöster Photoelektronenspektroskopie. Dabei schlagen Photonen aus ultraviolettem Licht Elektronen aus dem Material. Die kinetische Energie und der Winkel davonfliegender Elektronen lassen sich messen; daraus ergibt sich unter anderem die Bindungsenergie der Elektronen und damit die Bandstruktur. "Die Messungen haben gezeigt, dass das F4-TCNQ die überschüssige Ladung aus dem Graphen vollständig aufnimmt", sagt Camilla Coletti.

"Mit den neuen Methoden, können wir in ganz neue Forschungsrichtungen denken", sagt Ulrich Starke. So erhoffen sich die Forscher Fortschritte in der Spinelektronik; etwa indem sie magnetische Materialien an das Graphen lagern. Die Spinelektronik nutzt im Gegensatz zur herkömmlichen Elektronik das magnetische Moment eines Elektrons und nicht seine Ladung, um Information zu verarbeiten. Auch für Kohlenstofftransistoren könnte das Graphen dank der Entladung nun noch interessanter werden. Ulrich Starke erklärt: "Wenn wir es schaffen den Graphenschichten beizubringen sich so anzuordnen, wie wir es wollen, könnten wir Transistoren entwickeln, die nur mit einem Elektron schalten."

Originalveröffentlichung:

Camilla Coletti, Christian Riedl, Dong-Su Lee , Benjamin Krauss, Luc Patthey, Klaus von Klitzing, Jurgen H. Smet, Ulrich Starke
Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping

Physical Review, B 81, 235401 _2010_Vol. 4, 2010-17 (1. Juni 2010)

Christian Riedl, Camilla Coletti, Takayuki Iwasaki, Alexei Zakharov, Ulrich Starke
Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation
Physical Review Letters 103, 246804 (10. Dezember 2009)
Weitere Informationen erhalten Sie von:
Ulrich Starke
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 (0)711-689-1345
E-Mail: u.starke@fkf.mpg.de
Camilla Coletti, Ph.D.
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 (0)711-689-1346
E-Mail: c.coletti@fkf.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise