Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Göttinger Wissenschaftler entdecken neuen Quantenzustand in Metall mit magnetischer Frustration

21.03.2014

Quantenkritikalität einer Spinflüssigkeit

Ein deutsch-japanisches Forscherteam unter der Leitung der Universität Göttingen hat bei tiefen Temperaturen in einer speziellen Metallverbindung einen neuen Quantenzustand entdeckt.


Frustrierte Anordnung der magnetischen Momente auf den Ecken von verbundenen Tetraedern in der Pyrochlorstruktur von Praseodymiridiumoxid.

Foto: Universität Göttingen


Frustration bei antiparalleler Kopplung von magnetischen Momenten für ein gleichseitiges Dreieck.

Foto: Universität Göttingen

Als Folge der Heisenberg’schen Unschärferelation sind atomare Teilchen selbst am absoluten Nullpunkt stets in Bewegung, und diese Quantenfluktuationen können zu Transformationen zwischen unterschiedlichen Zuständen führen.

Das Verhalten in der Nähe solcher durch Quanteneffekte bewirkten Übergänge wird als Quantenkritikalität beschrieben. Eine neue Art von Quantenkritikalität entdeckten die Wissenschaftler nun bei hochempfindlichen Messungen der magnetischen Eigenschaften in einer kristallinen Verbindung von Praseodymiridiumoxid. Die Ergebnisse sind in der Fachzeitschrift Nature Materials erschienen.

Materialien, deren Eigenschaften durch Quanteneffekte bestimmt werden, zeigen oft überraschendes und neuartiges Verhalten, dessen besseres Verständnis von zentralem Interesse für Grundlagenforschung und technologische Anwendungen ist.

Die nun entdeckte Quantenkritikalität entsteht durch das Zusammenspiel atomarer magnetischer Momente der Praseodym-Atome und Iridium-Leitungselektronen. Diese Momente sind hier geometrisch so angeordnet, dass ihr Bestreben, sich parallel zu allen nächsten Nachbaratomen auszurichten, nicht gleichzeitig erfüllt werden kann – man spricht von einem geometrisch frustrierten Magneten.

Im Gegensatz zu einem nicht frustrierten Magneten kann dieser keine Ordnung ausbilden; die Momente bleiben in einem stark gekoppelten flüssigkeitsartigen Zustand. Solche Spinflüssigkeiten werden zurzeit intensiv studiert, da in ihnen besondere Anregungen vorliegen können, die sich wie magnetische Monopole verhalten.

Die nun veröffentlichten Ergebnisse zeigen erstmals quantenkritisches Verhalten einer solchen Spinflüssigkeit. Beim Abkühlen zu sehr tiefen Temperaturen frieren Richtungsänderungen der Momente nicht aus. Stattdessen bildet sich ein durch Quantenfluktuationen verursachter kritischer Zustand aus.

„Dies ist neu gegenüber allen bislang beobachteten Quantenspinflüssigkeiten und hängt vermutlich mit den in der speziellen Verbindung zusätzlich vorliegenden Iridium-Leitungselektronen und ihrer Streuung an den Praseodym-Atomen zusammen“, so der Experimentalphysiker Prof. Dr. Philipp Gegenwart, kürzlich von der Universität Göttingen an die Universität Augsburg gewechselt.

Das beobachtete Verhalten unterscheidet sich auch deutlich von allen bislang bekannten quantenkritischen Systemen und zeigt die besondere Bedeutung geometrischer Frustration für stark wechselwirkende Quantensysteme.

Originalveröffentlichung: Yoshi Tokiwa et al. Quantum criticality in a metallic spin liquid. Nature Materials 2014. Doi: 10.1038/nmat3900.

Kontaktadresse:
Prof. Dr. Philipp Gegenwart
Georg-August-Universität Göttingen
Fakultät für Physik
I. Physikalisches Institut
E-Mail: pgegenw@gwdg.de

Weitere Informationen:

http://www.uni-goettingen.de/de/3240.html?cid=4738 Fotos
http://www.uni-goettingen.de/de/sh/39787.html I. Physikalisches Institut

Thomas Richter | Uni Göttingen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Boten kommunizieren doppelt so schnell
22.02.2018 | Österreichische Akademie der Wissenschaften

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics