Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Göttinger Wissenschaftler entdecken neuen Quantenzustand in Metall mit magnetischer Frustration

21.03.2014

Quantenkritikalität einer Spinflüssigkeit

Ein deutsch-japanisches Forscherteam unter der Leitung der Universität Göttingen hat bei tiefen Temperaturen in einer speziellen Metallverbindung einen neuen Quantenzustand entdeckt.


Frustrierte Anordnung der magnetischen Momente auf den Ecken von verbundenen Tetraedern in der Pyrochlorstruktur von Praseodymiridiumoxid.

Foto: Universität Göttingen


Frustration bei antiparalleler Kopplung von magnetischen Momenten für ein gleichseitiges Dreieck.

Foto: Universität Göttingen

Als Folge der Heisenberg’schen Unschärferelation sind atomare Teilchen selbst am absoluten Nullpunkt stets in Bewegung, und diese Quantenfluktuationen können zu Transformationen zwischen unterschiedlichen Zuständen führen.

Das Verhalten in der Nähe solcher durch Quanteneffekte bewirkten Übergänge wird als Quantenkritikalität beschrieben. Eine neue Art von Quantenkritikalität entdeckten die Wissenschaftler nun bei hochempfindlichen Messungen der magnetischen Eigenschaften in einer kristallinen Verbindung von Praseodymiridiumoxid. Die Ergebnisse sind in der Fachzeitschrift Nature Materials erschienen.

Materialien, deren Eigenschaften durch Quanteneffekte bestimmt werden, zeigen oft überraschendes und neuartiges Verhalten, dessen besseres Verständnis von zentralem Interesse für Grundlagenforschung und technologische Anwendungen ist.

Die nun entdeckte Quantenkritikalität entsteht durch das Zusammenspiel atomarer magnetischer Momente der Praseodym-Atome und Iridium-Leitungselektronen. Diese Momente sind hier geometrisch so angeordnet, dass ihr Bestreben, sich parallel zu allen nächsten Nachbaratomen auszurichten, nicht gleichzeitig erfüllt werden kann – man spricht von einem geometrisch frustrierten Magneten.

Im Gegensatz zu einem nicht frustrierten Magneten kann dieser keine Ordnung ausbilden; die Momente bleiben in einem stark gekoppelten flüssigkeitsartigen Zustand. Solche Spinflüssigkeiten werden zurzeit intensiv studiert, da in ihnen besondere Anregungen vorliegen können, die sich wie magnetische Monopole verhalten.

Die nun veröffentlichten Ergebnisse zeigen erstmals quantenkritisches Verhalten einer solchen Spinflüssigkeit. Beim Abkühlen zu sehr tiefen Temperaturen frieren Richtungsänderungen der Momente nicht aus. Stattdessen bildet sich ein durch Quantenfluktuationen verursachter kritischer Zustand aus.

„Dies ist neu gegenüber allen bislang beobachteten Quantenspinflüssigkeiten und hängt vermutlich mit den in der speziellen Verbindung zusätzlich vorliegenden Iridium-Leitungselektronen und ihrer Streuung an den Praseodym-Atomen zusammen“, so der Experimentalphysiker Prof. Dr. Philipp Gegenwart, kürzlich von der Universität Göttingen an die Universität Augsburg gewechselt.

Das beobachtete Verhalten unterscheidet sich auch deutlich von allen bislang bekannten quantenkritischen Systemen und zeigt die besondere Bedeutung geometrischer Frustration für stark wechselwirkende Quantensysteme.

Originalveröffentlichung: Yoshi Tokiwa et al. Quantum criticality in a metallic spin liquid. Nature Materials 2014. Doi: 10.1038/nmat3900.

Kontaktadresse:
Prof. Dr. Philipp Gegenwart
Georg-August-Universität Göttingen
Fakultät für Physik
I. Physikalisches Institut
E-Mail: pgegenw@gwdg.de

Weitere Informationen:

http://www.uni-goettingen.de/de/3240.html?cid=4738 Fotos
http://www.uni-goettingen.de/de/sh/39787.html I. Physikalisches Institut

Thomas Richter | Uni Göttingen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie

Ein Quantensprung in der Herzdiagnostik

22.09.2017 | Medizintechnik

Am Einmaleins kommt keiner vorbei

22.09.2017 | Seminare Workshops