Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glatt gekupfert! Geebneter Weg zur Chipverdrahtung

22.06.2012
Kieler Physiker entdecken anomale Abscheidung von Kupfer

Einer Forschungsgruppe der Christian-Albrechts-Universität zu Kiel (CAU) gelang in Kooperation mit Wissenschaftlern der europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble, Frankreich, eine überraschende Entdeckung zum Wachstumsverhalten von Kupfer – einem wichtigen Bestandteil moderner elektronischer Bauelemente.


Grafische Darstellung des Wachstumsprozesses: Abgeschiedene Kupferatome bewegen sich auf der Oberfläche durch eine Schicht aus Chlorid.
Copyright: CAU, Grafik: J. Golks

Das von Professor Olaf Magnussen, Direktor am Institut für Experimentelle und Abgewandte Physik, geführte Team fand heraus, dass bei Abscheidung aus Lösung kleinste Zusätze von Chloridionen die Struktur der wachsenden Schicht und damit ihre Eigenschaften entscheidend beeinflussen.

Diese Ergebnisse, die gerade in der renommierten Zeitschrift Physical Review Letters veröffentlicht wurden, werden Ingenieurinnen und Ingenieuren in der Halbleiterindustrie bei der Verbesserung von Hightech Beschichtungsprozessen in der Mikrochip-Produktion helfen.

Kupfer ist aufgrund seiner überlegenen elektrischen Eigenschaften das Material der Wahl, wenn es um die elektrische Verdrahtung in moderner Unterhaltungselektronik wie Handys oder Laptops geht. Die technische Herstellung der Kupferschichten auf Leiterplatten wie auch der ultrakleinen Verbindungen auf den Mikrochips selber geschieht in Lösung. Dabei werden Kupferionen über eine angelegte Spannung entladen.
In ihren Experimenten untersuchten die Wissenschaftlerinnen und Wissenschaftler mit Hilfe der brillanten Röntgenstrahlung der ESRF, wie sich die Atome bei dieser elektrochemischen Abscheidung im Detail an die wachsende Oberfläche anlagern. Dabei beobachteten sie, dass die Kupferschichten mit steigender Spannung glatter aufwuchsen. „Dies war tatsächlich eine große Überraschung“, erklärt Magnussen. „Andere Metalle, wie zum Beispiel Gold, wachsen zu höheren Spannungen hin rauer auf und dies wird auch durch die derzeit vorherrschende Theorie so vorhergesagt.“

Letztendlich konnten die Forscher das anomale Verhalten von Kupfer mit der atomaren Anordnung in einer Schicht aus Chloridionen erklären, die sich auf der Oberfläche befindet. Abgeschiedene Kupferatome müssen sich auf der Oberfläche einen Weg durch diese Schicht bahnen und werden bei höheren Spannungen, bei denen das Chlorid schwächer gebunden ist, deutlich beweglicher.
Da der störungsfreie Betrieb von Mikrochips von qualitativ hochwertigen elektrischen Verbindungen abhängt, wird intensiv untersucht, wie das Wachstum besser kontrolliert und die Eigenschaften des abgeschiedenen Kupfers optimiert werden können. „Die Leute in der Industrie wissen seit langem, dass man etwas Chlorid in der Lösung haben muss, um gute Filme zu erhalten, aber niemand weiß wirklich warum“, betont Magnussen. Die neuen Ergebnisse könnten dieses Rätsel endlich lösen und helfen, die Herstellungsprozesse für Kupferverdrahtungen in der Halbleiterindustrie zu verbessern.

Die Christian-Albrechts-Universität zu Kiel hat als Forschungsuniversität im Norden Deutschlands eine ausgewiesene internationale Expertise im Bereich Nanowissenschaften. Dazu gehört auch Forschung mit Synchrotronstrahlung. In einer Reihe von Forschungsverbünden, die durch das Bundesministerium für Bildung und Forschung gefördert werden, entwickeln Kieler Wissenschaftlerinnen und Wissenschaftler neue Methoden und Instrumente. Die ESRF ist eine durch 19 Nationen geförderte europäische Forschungseinrichtung, die brillante Synchrotronstrahlung für innovative Forschung zur Verfügung stellt und nutzt.

Originalveröffentlichung:
F. Golks, J. Stettner, Y. Gründer, K. Krug, J. Zegenhagen, O.M. Magnussen: Anomalous potential dependence in homoepitaxial Cu(001) electrodeposition: an in situ surface x-ray diffraction study. Physcal Review Letters 2012, 108, 256101

Drei Abbildungen stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2012/2012-182-1.jpg
Bildunterschrift: Grafische Darstellung des Wachstumsprozesses: Abgeschiedene Kupferatome bewegen sich auf der Oberfläche durch eine Schicht aus Chlorid.
Copyright: CAU, Grafik: J. Golks

http://www.uni-kiel.de/download/pm/2012/2012-182-2.jpg
Bildunterschrift: Einbau der Kupferprobe in das Röntgenexperiment an der europäischen Synchrotronstrahlungsquelle ESRF.
Copyright: CAU, Foto: J. Stettner

http://www.uni-kiel.de/download/pm/2012/2012-182-3.jpg
Bildunterschrift: Europäische Synchrotronstrahlungsquelle ESRF in Grenoble, Frankreich
Copyright: ESRF

Kontakt:
Prof. Dr. Olaf Magnussen
Tel. 0431/880-5579
E-Mail: magnussen@physik.uni-kiel.de

Dr. Boris Pawlowski | Uni Kiel
Weitere Informationen:
http://www.uni-kiel.de
http://www.uni-kiel.de/aktuell/pm/2012/2012-182-kupfer.shtml

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie