Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Glasfaser, die Atome zählt

07.12.2011
Eine extrem empfindliche Methode zum Detektieren von Atomen wurde an der Technischen Universität (TU) Wien entwickelt.

Glasfaserkabel sind heute unverzichtbare Informationsleitungen für das Internet – nun dienen sie auch als Quanten-Labor. Das Atominstitut der TU Wien ist derzeit die einzige Forschungseinrichtung weltweit, an der einzelne Atome kontrolliert an das Licht in ultradünnen Glasfasern angekoppelt werden können.


Visualisierung der Glasfaser: Die Lichtwelle im Inneren ragt aus der Faser heraus und wird durch die Atome beeinflusst, die oben und unten knapp außerhalb der Glasfaser angelagert sind.
Graphik: F. Aigner, TU Wien

Spezielle Lichtwellen werden so präpariert, dass sie schon auf eine kleine Anzahl von Atomen sensibel reagieren. Damit lassen sich hochempfindliche Detektoren bauen, mit denen man winzige Stoffmengen nachweisen kann. Das Team um Professor Arno Rauschenbeutel, der eine von sechs Forschungsgruppen des Vienna Center for Quantum Science and Technology leitet, stellt seine Methode in der aktuellen Ausgabe des Fachjournals „Physical Review Letters“ vor. Die Arbeit entstand in Kooperation mit der Johannes Gutenberg-Universität Mainz, von der Rauschenbeutel im vergangenen Jahr nach Wien übersiedelt ist.

Ultradünne Glasfasern

Die Glasfasern, die Arno Rauschenbeutel für seine Experimente verwendet, sind nur fünfhundert Millionstel eines Millimeters dick – und damit dünner als die Wellenlänge des sichtbaren Lichts. „Die Lichtwelle passt also eigentlich nicht vollständig in die Glasfaser, sie reicht noch ein Stück aus der Glasfaser heraus“, erklärt Rauschenbeutel. Genau darin liegt der große Vorteil: Die Lichtwelle registriert Atome, die sich außen in der Nähe der Glasfaser befinden. „Zuerst fangen wir Atome ein, sodass sie sich knapp oberhalb und unterhalb an der Glasfaser aufreihen, wie Perlen einer Kette“, erzählt Rauschenbeutel. Die Lichtwelle, die durch die Glasfaser geschickt wird, kommt dann mit jedem einzelnen der Atome in Kontakt. Wenn man genau misst, wie sich die Lichtwelle verändert, lässt sich herausfinden, wie viele Atome sich angelagert haben.

Atome ändern die Geschwindigkeit des Lichts

Meist gehen auf der mikroskopischen Ebene sehr folgenschwere Prozesse vor sich, wenn man in der Quantenphysik Atome und Licht untersucht: Lichtteilchen können von den Atomen absorbiert und später in eine andere Richtung wieder ausgesandt werden, Atome werden dadurch beschleunigt und von ihrem Ursprungsort weggeschleudert. Bei den Glasfaser-Experimenten an der TU Wien reicht allerdings eine vergleichsweise sanfte Wechselwirkung zwischen Licht und Atomen aus: „Durch die Atome an der Glasfaser bewegt sich die Lichtwelle nicht mehr so schnell wie sonst, sondern etwas langsamer“, erklärt Arno Rauschenbeutel. Wenn die Lichtwelle genau nach oben und unten in Richtung der Atome schwingt, werden Wellenberge und Wellentäler dadurch ein kleines Bisschen verschoben. Eine andere Lichtwelle, in deren Schwingungsebene keine Atome liegen, wird hingegen kaum verzögert. Man sendet also Lichtwellen unterschiedlicher Schwingungsrichtung durch die Glasfaser und misst ihre relative Verschiebung aufgrund ihrer unterschiedlichen Ausbreitungsgeschwindigkeiten. Kennt man diese Verschiebung, dann weiß man auch, von wie vielen Atomen das Licht verzögert wurde.

Einzelne Atome messbar machen

Derzeit positioniert das Quantenphysik-Team von Arno Rauschenbeutel hunderte bis tausende Atome in einem Abstand von weniger als einem Tausendstel Millimeter zur Glasfaser. Mit den Lichtstrahlen kann dann ihre Anzahl auf wenige Atome genau bestimmt werden. „Im Prinzip ist unsere Methode so präzise, dass sie schon auf zehn bis zwanzig einzelne Atome ansprechen kann“, meint Arno Rauschenbeutel. „Wir arbeiten noch an weiteren technischen Tricks – etwa an der Verringerung des Abstandes zwischen der Glasfaser und den Atomen. Wenn uns das gelingt, sollte es möglich sein, sogar einzelne Atome zuverlässig nachzuweisen.“

Sanfte Quanten-Messung

Nicht nur für die Entwicklung von Sensoren, auch für die quantenphysikalische Grundlagenforschung ist die Glasfaser-Methode wichtig. „Normalerweise geht bei einer Messung der quantenphysikalische Zustand eines Systems verloren, weil der Messvorgang einen starken Einfluss auf das Quanten-Objekt hat“, erklärt Arno Rauschenbeutel. „Unsere Glasfasern eröffnen die Möglichkeit, Quantenzustände zerstörungsfrei nach Belieben zu kontrollieren.“ Zum Beispiel kann mit Hilfe der Atome an der Glasfaser die Schwingungsrichtung von einzelnen Lichtteilchen genau gesteuert werden. Zu welchen technologischen Anwendungen das führen könnte, ist heute noch gar nicht absehbar. „Die Quantenoptik ist heute eine weltweit aufmerksam beachtete und äußerst innovative Disziplin – und die Wiener Forschungsgruppen in diesem Bereich spielen hier auf höchstem internationalen Niveau mit“, sagt Arno Rauschenbeutel.

Rückfragehinweis:
Prof. Arno Rauschenbeutel
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-(1)-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://arxiv.org/abs/1108.2469v2

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie