Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Glasfaser, die Atome zählt

07.12.2011
Eine extrem empfindliche Methode zum Detektieren von Atomen wurde an der Technischen Universität (TU) Wien entwickelt.

Glasfaserkabel sind heute unverzichtbare Informationsleitungen für das Internet – nun dienen sie auch als Quanten-Labor. Das Atominstitut der TU Wien ist derzeit die einzige Forschungseinrichtung weltweit, an der einzelne Atome kontrolliert an das Licht in ultradünnen Glasfasern angekoppelt werden können.


Visualisierung der Glasfaser: Die Lichtwelle im Inneren ragt aus der Faser heraus und wird durch die Atome beeinflusst, die oben und unten knapp außerhalb der Glasfaser angelagert sind.
Graphik: F. Aigner, TU Wien

Spezielle Lichtwellen werden so präpariert, dass sie schon auf eine kleine Anzahl von Atomen sensibel reagieren. Damit lassen sich hochempfindliche Detektoren bauen, mit denen man winzige Stoffmengen nachweisen kann. Das Team um Professor Arno Rauschenbeutel, der eine von sechs Forschungsgruppen des Vienna Center for Quantum Science and Technology leitet, stellt seine Methode in der aktuellen Ausgabe des Fachjournals „Physical Review Letters“ vor. Die Arbeit entstand in Kooperation mit der Johannes Gutenberg-Universität Mainz, von der Rauschenbeutel im vergangenen Jahr nach Wien übersiedelt ist.

Ultradünne Glasfasern

Die Glasfasern, die Arno Rauschenbeutel für seine Experimente verwendet, sind nur fünfhundert Millionstel eines Millimeters dick – und damit dünner als die Wellenlänge des sichtbaren Lichts. „Die Lichtwelle passt also eigentlich nicht vollständig in die Glasfaser, sie reicht noch ein Stück aus der Glasfaser heraus“, erklärt Rauschenbeutel. Genau darin liegt der große Vorteil: Die Lichtwelle registriert Atome, die sich außen in der Nähe der Glasfaser befinden. „Zuerst fangen wir Atome ein, sodass sie sich knapp oberhalb und unterhalb an der Glasfaser aufreihen, wie Perlen einer Kette“, erzählt Rauschenbeutel. Die Lichtwelle, die durch die Glasfaser geschickt wird, kommt dann mit jedem einzelnen der Atome in Kontakt. Wenn man genau misst, wie sich die Lichtwelle verändert, lässt sich herausfinden, wie viele Atome sich angelagert haben.

Atome ändern die Geschwindigkeit des Lichts

Meist gehen auf der mikroskopischen Ebene sehr folgenschwere Prozesse vor sich, wenn man in der Quantenphysik Atome und Licht untersucht: Lichtteilchen können von den Atomen absorbiert und später in eine andere Richtung wieder ausgesandt werden, Atome werden dadurch beschleunigt und von ihrem Ursprungsort weggeschleudert. Bei den Glasfaser-Experimenten an der TU Wien reicht allerdings eine vergleichsweise sanfte Wechselwirkung zwischen Licht und Atomen aus: „Durch die Atome an der Glasfaser bewegt sich die Lichtwelle nicht mehr so schnell wie sonst, sondern etwas langsamer“, erklärt Arno Rauschenbeutel. Wenn die Lichtwelle genau nach oben und unten in Richtung der Atome schwingt, werden Wellenberge und Wellentäler dadurch ein kleines Bisschen verschoben. Eine andere Lichtwelle, in deren Schwingungsebene keine Atome liegen, wird hingegen kaum verzögert. Man sendet also Lichtwellen unterschiedlicher Schwingungsrichtung durch die Glasfaser und misst ihre relative Verschiebung aufgrund ihrer unterschiedlichen Ausbreitungsgeschwindigkeiten. Kennt man diese Verschiebung, dann weiß man auch, von wie vielen Atomen das Licht verzögert wurde.

Einzelne Atome messbar machen

Derzeit positioniert das Quantenphysik-Team von Arno Rauschenbeutel hunderte bis tausende Atome in einem Abstand von weniger als einem Tausendstel Millimeter zur Glasfaser. Mit den Lichtstrahlen kann dann ihre Anzahl auf wenige Atome genau bestimmt werden. „Im Prinzip ist unsere Methode so präzise, dass sie schon auf zehn bis zwanzig einzelne Atome ansprechen kann“, meint Arno Rauschenbeutel. „Wir arbeiten noch an weiteren technischen Tricks – etwa an der Verringerung des Abstandes zwischen der Glasfaser und den Atomen. Wenn uns das gelingt, sollte es möglich sein, sogar einzelne Atome zuverlässig nachzuweisen.“

Sanfte Quanten-Messung

Nicht nur für die Entwicklung von Sensoren, auch für die quantenphysikalische Grundlagenforschung ist die Glasfaser-Methode wichtig. „Normalerweise geht bei einer Messung der quantenphysikalische Zustand eines Systems verloren, weil der Messvorgang einen starken Einfluss auf das Quanten-Objekt hat“, erklärt Arno Rauschenbeutel. „Unsere Glasfasern eröffnen die Möglichkeit, Quantenzustände zerstörungsfrei nach Belieben zu kontrollieren.“ Zum Beispiel kann mit Hilfe der Atome an der Glasfaser die Schwingungsrichtung von einzelnen Lichtteilchen genau gesteuert werden. Zu welchen technologischen Anwendungen das führen könnte, ist heute noch gar nicht absehbar. „Die Quantenoptik ist heute eine weltweit aufmerksam beachtete und äußerst innovative Disziplin – und die Wiener Forschungsgruppen in diesem Bereich spielen hier auf höchstem internationalen Niveau mit“, sagt Arno Rauschenbeutel.

Rückfragehinweis:
Prof. Arno Rauschenbeutel
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-(1)-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://arxiv.org/abs/1108.2469v2

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie