Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gibt es doch elektrische Ströme in einem Isolator?

04.10.2012
Forscher des Max-Born-Instituts in Berlin beobachteten einen extrem schnellen Austausch von Elektronen zwischen benachbarten Atomen nach Anlegen eines starken optischen Feldes an einen Isolator. Die räumliche Elektronendichte konnte mit Hilfe von ultrakurzen Röntgenblitzen direkt abgebildet werden.

Schon in der Schule lernt man, dass jedes Material, insbesondere die Festkörper, entweder als Metall oder Isolator klassifiziert werden kann. Wenn man Pole einer Batterie mit einem Stück Metall verbindet, fließen Elektronen vom Minuspol zum Pluspol, d.h. die angelegte Spannung erzeugt einen elektrischen Strom.


Der Cartoon zeigt die Elektronbewegung zwischen benachbarten Atomen in einem LiBH4-Kristall. (mehr unter PM-Text)

Wenn man das gleiche Experiment mit einem Stück nichtleitenden Material macht, misst man dagegen gar keinen elektrischen Strom. Man könnte sich daher fragen, ob die Elektronen in einem Isolator sich überhaupt bewegen, wenn sie einem starken Feld (Spannung) ausgesetzt sind. Und, falls sie sich doch bewegen: wie weit und wie schnell ?

Um diese grundlegende Frage zu beantworten, muss man die Position der Elektronen im Material mit einer räumlichen Genauigkeit von 0.1 nm (0.1 nm=10-10 m) messen, was ungefähr den Abstand zwischen benachbarten Atomen entspricht. Das ist möglich, wenn man das Material mit Röntgenstrahlen abbildet, die von Elektronen gestreut werden und über deren räumliche Verteilung Auskunft geben. Zusätzlich muss man ein sehr starkes elektrisches Feld anlegen um die Elektronen von ihren Ursprungsatomen wegzuziehen. Extrem starke elektrische Felder kann man für sehr kurze Zeiten (50 fs, 1 fs = 10-15 s) mittels optischer Lichtimpulse erzeugen.

In der aktuellen Ausgabe von Physical Review Letters (PRL 109, 147402 (2012)) berichten Johannes Stingl, Flavio Zamponi, Benjamin Freyer, Michael Woerner, Thomas Elsaesser und Andreas Borgschulte über die erste in-situ Röntgenabbildung von Elektronen- und Atombewegungen, die von einem starken optischen Feld ausgelöst wurden. Sie haben für das Prototypmaterial LiBH4 eine zeitabhängige „Elektronendichte-Landkarte“ aufgenommen, die aus einer Reihe Schnappschüssen mittels ultrakurzer Röntgenblitze (100 fs) gewonnen wurde. Schnappschüsse zu verschiedenen Zeiten während und nach dem Lichtimpuls bilden einen "Röntgenfilm", der die atomaren und elektronischen Bewegungen im LiBH4-Kristall sichtbar macht.

Zur großen Überraschung der Forscher fand während des zeitlichen Überlapps zwischen optischem Lichtimpuls und Röntgenblitz ein extrem schneller Elektrontransfer von dem BH4-- zu dem benachbarten Li+-Ion statt, das ca. 0.25 nm entfernt liegt. Da das elektrische Feld des Lichtes seine Richtung alle 1.3 fs umkehrt, wird das Elektron zwischen zwei Orten mit sehr hoher Geschwindigkeit, etwa 1 % der Lichtegeschwindigkeit (c = 300.000 km / s) hin und her bewegt. Nach dem Lichtimpuls kehrt das Elektron zu dem BH4--Ion zurück und die ursprüngliche Elektronverteilung ist wiederhergestellt. Neben diesem instantanen und reversiblen Elektrontransfer gibt es keine makroskopischen Ströme, d.h. das Material verhält sich wie ein Isolator.

Eine quantitative Analyse zeigt, dass die große Auslenkung der Elektronen zwischen den benachbarten Ionen den Hauptbeitrag zur elektrischen Polarisation ausmacht und die Ursache für viele Nichtlinearitäten bei optischen Frequenzen darstellt. Neben den neuen Einblicken in fundamentale elektrische und optische Eigenschaften von Isolatoren bieten die Experimente an LiBH4 hohes Anwendungspotential für die zeitliche Charakterisierung von ultrakuren Röntgen-Impulsen.

Movie: (zu sehen unter http://www.fv-berlin.de)
Der Cartoon zeigt die Elektronbewegung zwischen benachbarten Atomen in einem LiBH4-Kristall. Die rote Kurve im oberen Teilbild zeigt das elektrische Feld des Laserlichts als Funktion der Zeit. Der sich bewegende blaue Punkt markiert die Stärke und Richtung des elektrischen Feldes für den entsprechenden Schnappschuss im unteren Teilbild. Dieser zeigt eine "Elektronendichte-Landkarte" der Einheitszelle eines LiBH4 Kristalls. Ohne Anlegen eines elektrischen Feldes haben die BH4--Anionen (sehr helle Regionen) eine größere Elektronendichte als die Li+ Kationen (dunklere Spots). Während des Laserimpulses treibt das oszillierende elektrische Feld starke elektrische Ströme zwischen den BH4- und Li+ Ionen, welche mittels der Intensität der auftretenden dreieckigen Pfeile angedeutet werden.
Contact:
Michael Woerner, Tel: +49-30-6392 1470, email: woerner@mbi-berlin.de
Flavio Zamponi, Tel: +49-30-6392 1472, email: zamponi@mbi-berlin.de
Thomas Elsaesser, Tel.: +49-30-6392 1400, email: elsasser@mbi-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics