Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gibt es doch elektrische Ströme in einem Isolator?

04.10.2012
Forscher des Max-Born-Instituts in Berlin beobachteten einen extrem schnellen Austausch von Elektronen zwischen benachbarten Atomen nach Anlegen eines starken optischen Feldes an einen Isolator. Die räumliche Elektronendichte konnte mit Hilfe von ultrakurzen Röntgenblitzen direkt abgebildet werden.

Schon in der Schule lernt man, dass jedes Material, insbesondere die Festkörper, entweder als Metall oder Isolator klassifiziert werden kann. Wenn man Pole einer Batterie mit einem Stück Metall verbindet, fließen Elektronen vom Minuspol zum Pluspol, d.h. die angelegte Spannung erzeugt einen elektrischen Strom.


Der Cartoon zeigt die Elektronbewegung zwischen benachbarten Atomen in einem LiBH4-Kristall. (mehr unter PM-Text)

Wenn man das gleiche Experiment mit einem Stück nichtleitenden Material macht, misst man dagegen gar keinen elektrischen Strom. Man könnte sich daher fragen, ob die Elektronen in einem Isolator sich überhaupt bewegen, wenn sie einem starken Feld (Spannung) ausgesetzt sind. Und, falls sie sich doch bewegen: wie weit und wie schnell ?

Um diese grundlegende Frage zu beantworten, muss man die Position der Elektronen im Material mit einer räumlichen Genauigkeit von 0.1 nm (0.1 nm=10-10 m) messen, was ungefähr den Abstand zwischen benachbarten Atomen entspricht. Das ist möglich, wenn man das Material mit Röntgenstrahlen abbildet, die von Elektronen gestreut werden und über deren räumliche Verteilung Auskunft geben. Zusätzlich muss man ein sehr starkes elektrisches Feld anlegen um die Elektronen von ihren Ursprungsatomen wegzuziehen. Extrem starke elektrische Felder kann man für sehr kurze Zeiten (50 fs, 1 fs = 10-15 s) mittels optischer Lichtimpulse erzeugen.

In der aktuellen Ausgabe von Physical Review Letters (PRL 109, 147402 (2012)) berichten Johannes Stingl, Flavio Zamponi, Benjamin Freyer, Michael Woerner, Thomas Elsaesser und Andreas Borgschulte über die erste in-situ Röntgenabbildung von Elektronen- und Atombewegungen, die von einem starken optischen Feld ausgelöst wurden. Sie haben für das Prototypmaterial LiBH4 eine zeitabhängige „Elektronendichte-Landkarte“ aufgenommen, die aus einer Reihe Schnappschüssen mittels ultrakurzer Röntgenblitze (100 fs) gewonnen wurde. Schnappschüsse zu verschiedenen Zeiten während und nach dem Lichtimpuls bilden einen "Röntgenfilm", der die atomaren und elektronischen Bewegungen im LiBH4-Kristall sichtbar macht.

Zur großen Überraschung der Forscher fand während des zeitlichen Überlapps zwischen optischem Lichtimpuls und Röntgenblitz ein extrem schneller Elektrontransfer von dem BH4-- zu dem benachbarten Li+-Ion statt, das ca. 0.25 nm entfernt liegt. Da das elektrische Feld des Lichtes seine Richtung alle 1.3 fs umkehrt, wird das Elektron zwischen zwei Orten mit sehr hoher Geschwindigkeit, etwa 1 % der Lichtegeschwindigkeit (c = 300.000 km / s) hin und her bewegt. Nach dem Lichtimpuls kehrt das Elektron zu dem BH4--Ion zurück und die ursprüngliche Elektronverteilung ist wiederhergestellt. Neben diesem instantanen und reversiblen Elektrontransfer gibt es keine makroskopischen Ströme, d.h. das Material verhält sich wie ein Isolator.

Eine quantitative Analyse zeigt, dass die große Auslenkung der Elektronen zwischen den benachbarten Ionen den Hauptbeitrag zur elektrischen Polarisation ausmacht und die Ursache für viele Nichtlinearitäten bei optischen Frequenzen darstellt. Neben den neuen Einblicken in fundamentale elektrische und optische Eigenschaften von Isolatoren bieten die Experimente an LiBH4 hohes Anwendungspotential für die zeitliche Charakterisierung von ultrakuren Röntgen-Impulsen.

Movie: (zu sehen unter http://www.fv-berlin.de)
Der Cartoon zeigt die Elektronbewegung zwischen benachbarten Atomen in einem LiBH4-Kristall. Die rote Kurve im oberen Teilbild zeigt das elektrische Feld des Laserlichts als Funktion der Zeit. Der sich bewegende blaue Punkt markiert die Stärke und Richtung des elektrischen Feldes für den entsprechenden Schnappschuss im unteren Teilbild. Dieser zeigt eine "Elektronendichte-Landkarte" der Einheitszelle eines LiBH4 Kristalls. Ohne Anlegen eines elektrischen Feldes haben die BH4--Anionen (sehr helle Regionen) eine größere Elektronendichte als die Li+ Kationen (dunklere Spots). Während des Laserimpulses treibt das oszillierende elektrische Feld starke elektrische Ströme zwischen den BH4- und Li+ Ionen, welche mittels der Intensität der auftretenden dreieckigen Pfeile angedeutet werden.
Contact:
Michael Woerner, Tel: +49-30-6392 1470, email: woerner@mbi-berlin.de
Flavio Zamponi, Tel: +49-30-6392 1472, email: zamponi@mbi-berlin.de
Thomas Elsaesser, Tel.: +49-30-6392 1400, email: elsasser@mbi-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics