Laser-Technologie: Gewinnen durch Verlust

Zwei kreisförmige Raman-Laser werden aneinander gekoppelt und durch eine Licht-Faser mit Energie versorgt (sh. gelbe Linie). Foto credit: J. Zhu, B. Peng, S.K. Ozdemir, L. Yang

Was zunächst wie eine mathematische Kuriosität aussah ist nun zur neuen Laser-Technologie geworden. Vor zwei Jahren wurde von Physikern der TU Wien ein paradoxer Laser-Effekt vorhergesagt: In bestimmten Situationen kann man einen Laser einschalten, indem man ihm nicht mehr Energie zuführt, sondern ihm stattdessen Energie entnimmt.

Erste experimentelle Anzeichen für diesen Effekt wurden vor kurzem an der TU gefunden; nun konnte der paradoxe Laser-Effekt in Zusammenarbeit mit Teams von der Washington University in St. Louis, USA und von RIKEN, Japan auf ein weiteres Laser-System übertragen und dort präzise vermessen werden. Die Ergebnisse wurden im Fachjournal „Science“ veröffentlicht.

Einschalten durch Ausschalten

Matthias Liertzer und Prof. Stefan Rotter stießen zunächst in Computersimulationen auf den Effekt: „Wenn man zwei kleine, gleichartig gebaute Laser in engen Kontakt zueinander bringt, dann können sich diese auf eine Weise beeinflussen, die auf den ersten Blick jeder Erwartung widerspricht“, erklärt Stefan Rotter. „Normalerweise leuchtet ein Laser, wenn man ihm mehr Energie zuführt. Doch bei geeigneter Laser-Kopplung kann eine Energiezufuhr die beiden Laser abschalten und ein Energieverlust kann die Laser zum Leuchten bringen.“

In einem Laser werden Lichtteilchen vervielfältigt, es kommt zu einer Kettenreaktion die letztendlich kräftige Strahlung erzeugt. Normalerweise ist dabei jeder Lichtverlust höchst unerwünscht. Wenn zu viel Licht verlorengeht, etwa durch eine schlecht verspiegelte Außenwand des Lasers, dann kann die Lichtproduktions-Kettenreaktion nicht aufrecht erhalten werden und der Laser erlischt.

Paradoxes Verhalten am „Entartungspunkt“

„Die Eigenschaften der Laser kann man durch mathematische Gleichungssysteme sehr gut beschreiben und verstehen“, erklärt Matthias Liertzer. „Wenn man sich diese Gleichungen genau ansieht, mit denen auch die Kopplung zwischen zwei Lasern beschrieben wird, dann stellt man fest, dass hier sogenannte Entartungspunkte auftreten. Befindet sich der Zustand, der den Laser mathematisch charakterisiert, in der Umgebung eines solchen Entartungspunktes, dann zeigt sich paradoxes Verhalten.“

Im Experiment, das von Bo Peng und Dr. Sahin Kaya Ozdemir mit der Gruppe von Prof. Lan Yang in St. Louis, USA durchgeführt wurde, stellte man zwei winzige kreisförmige Laser her, die man in unmittelbarer Nähe zueinander platzierte. Zusätzlich wurde eine feine Spitze aus Chrom in das System eingebracht, die Licht stark absorbiert. Durch genaues Justieren der Spitze kann der Lichtverlust fein dosiert werden. „Die Experimente bestätigten unsere Vorhersagen: Wenn sich das System in der Nähe des Entartungspunktes befindet, führt die Absorption der Spitze dazu, dass sich der Laser einschaltet und zu leuchten beginnt“, sagt Stefan Rotter.

Die Besonderheiten solcher Entartungspunkte zu verstehen wird für ganz unterschiedliche technologische Anwendungen wichtig sein, glaubt Rotter: „Das kann für hochsensible Detektoren nützlich sein, oder für jedes andere System das aus gekoppelten Oszillatoren besteht, wie zum Beispiel in der Opto-Mechanik. Jedenfalls gibt es noch viele interessante Effekte, die man im Zusammenhang mit diesen Entartungspunkten studieren kann“, meint Stefan Rotter.

Rückfragehinweise:
Dipl.-Ing. Matthias Liertzer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T.: +43-1-58801-13644
matthias@liertzer.at

Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

http://www.sciencemag.org/content/346/6207/328.full Originalartikel
http://www.sciencemag.org/content/346/6207/304.full Zusatzinfo (Science)

Media Contact

Dr. Florian Aigner Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer