Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Getrennt und doch zusammen: Nanokapseln mit Schlaufen sind auf immer verbunden

13.02.2009
Wissenschaftler zeigen ersten mechanisch herbeigeführten, reversiblen Bindungsbruch eines Einzelmoleküls - Veröffentlichung in Nature Nanotechnology

Wissenschaftler der Johannes Gutenberg-Universität Mainz haben ein Molekül hergestellt, das bei Überstreckung auseinanderbricht, dann aber wieder zu seiner ursprünglichen Form zurückfinden kann.

Sie stellen damit den ersten mechanisch herbeigeführten, umkehrbaren Bindungsbruch eines einzelnen Moleküls vor. "Es ist in etwa so, als ob wir zwei miteinander verbundene Kapseln auseinanderziehen, bis sie in der Mitte entzweibrechen. Wenn wir dann loslassen, können sich die beiden Hälften wieder zusammenfügen", erklärt Univ.-Prof. Dr. Andreas Janshoff zu den Nanotechnologie-Arbeiten. Die Umkehrbarkeit des Vorgangs wird durch eine Schlaufenverbindung zwischen den beiden Hälften des Moleküls erreicht. Die Forschungsarbeiten wurden jetzt in dem Fachjournal Nature Nanotechnology vorgestellt.

Bei dem Versuchsobjekt der Nano-Wissenschaftler handelt es sich um ein sogenanntes Calixaren-Dimer, ein Molekül, das aus zwei Teilen besteht - daher die Bezeichnung "Dimer" - und das mit einer Größe von wenigen Nanometern zu den vergleichsweise großen Molekülen gehört. Calixarene finden Einsatz in der Analytik, da sie in der Lage sind Gastverbindungen selektiv einzuschließen. Durch ein spezielles Moleküldesign gelang es dem Team von Physikochemikern und organischen Chemikern, ein "verschlauftes" Calixaren-Dimer herzustellen, bei dem die beiden Teile durch Wasserstoffbrücken zusammengehalten werden. Werden die Nanokapseln nun mit Hilfe einer extrem feinen Messspitze mechanisch verstreckt, reißen sie auseinander. "Durch die Verschlaufung können die Hälften aber nicht unendlich weit auseinander gehen, sondern sie werden von den molekularen Schlaufen zurückgehalten", erklärt Janshoff. Zusammen mit den Professoren Jürgen Gauß und Gregor Diezemann vom Institut für Physikalische Chemie sowie Volker Böhmer und Nachwuchswissenschaftlerin Yuliya Rudzevich vom Institut für Organische Chemie sowie Piotr Marszalek von der Duke University hat er vor seinem Wechsel an die Georg-August-Universität Göttingen die Arbeiten im Rahmen des Sonderforschungsbereichs 625 in Mainz durchgeführt. "Durch die Länge der Schlaufen können wir beispielsweise exakt limitieren, wie weit sich die beiden Teile des Moleküls auseinanderziehen lassen."

Die Einzelmolekül-Experimente geben den Wissenschaftlern ein besseres Verständnis davon, wie der Molekülkomplex bei Einwirkung einer äußeren Kraft zusammenhält und wie das Wasserstoffbrücken-Netzwerk funktioniert. Darüber hinaus liefern die experimentellen Tests auch die Grundlage für viele Theorien der aktuellen statistischen Mechanik: Ob die Moleküle in der komplexen Form mit beiden Hälften zusammen vorliegen oder ob sie mit den getrennten Hälften auftreten, kann durch die Schlaufenlänge eingestellt werden und so gezielt der Übergang von einem Gleichgewichts- in einen Nicht-Gleichgewichtszustand durch geschwindigkeitsabhängige Zugexperimente vollzogen werden. Dadurch können Theorien überprüft werden die aus dem Nicht-Gleichgewichtszustand die freie Energie rekonstruieren wollen. Diesem Thema wollen sich die Wissenschaftler in Zukunft verstärkt zuwenden.

Originalveröffentlichung:
Matthias Janke, Yuliya Rudzevich, Olena Molokanova, Thorsten Metzroth, Ingo Mey, Gregor Diezemann, Piotr E. Marszalek, Jürgen Gauss, Volker Böhmer, Andreas Janshoff
Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force
Nature Nanotechnology, Online-Veröffentlichung 8. Februar 2009
doi:10.1038/nnano.2008.416
Kontakt und Informationen:
Prof. Dr. Andreas Janshoff
Institut für Physikalische Chemie
Georg-August-Universität-Göttingen
Tel. +49 551 39-10633
E-Mail: ajansho@gwdg.de
Dr. Yuliya Rudzevich
Institut für Organische Chemie
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-23873
Fax +49 6131 39-25419
E-Mail: rudzevic@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.sfb625.uni-mainz.de/
http://www.uni-mainz.de/FB/Chemie/fbhome/physc/
http://www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2008.416.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics