Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geteiltes Elektron blitzt im Streifflug auf

12.11.2010
Ultrakurze Laserpulse lassen sich vielleicht auf vielfältigere Weise erzeugen als gedacht

Physikern könnte sich künftig ein neuer Blick in Atome und Moleküle bieten. Wissenschaftler des Max-Planck-Instituts für Kernphysik haben nämlich einen neuen Weg vorgeschlagen, mit ultrakurzen Laserpulsen Information über Materie zu gewinnen. Sie haben berechnet, dass gerade der Mechanismus, durch den die Lichtpulse entstehen, auch in die Tiefe von Atomen und Molekülen blicken lässt. (Physical Review Letters, 11. November 2010)


Zwei Teile ein und desselben Elektrons (hier rot und blau) interferieren beim Auftreffen auf ein Atom und senden dabei einen hochfrequenten laserartigen (kohärenten) Lichtblitz aus. Bild: Max-Planck-Institut für Kernphysik - Markus Kohler

Ein verknackster Fuß oder ein unbequem sitzender Weisheitszahn, geröntgt wurde wohl jeder schon einmal. Beim Röntgen durchleuchtet sehr energiereiche Strahlung das Knochengewebe und offenbart dessen Struktur. Doch auch Wissenschaftler sind auf verschiedene Arten von Strahlung angewiesen, wenn sie Materialien oder Prozesse in Molekülen analysieren. Dabei schneiden sie die Eigenschaften ihrer Lichtquellen auf das jeweilige Experiment zu und versuchen ständig, diese zu optimieren.

Viele dieser Verfahren beruhen auf demselben einfachen Prinzip: Materie wird von einer passenden Lichtquelle bestrahlt oder durchleuchtet. Das reflektierte oder gestreute Licht liefert dann ein Abbild der Materiestruktur. Diese Methode stößt jedoch bei sehr kleinen, komplexen Objekten mit sich zeitlich sehr rasch ändernden Strukturen an ihre Grenzen. Ultrakurze Prozesse, die in der Tiefenstruktur einzelner Moleküle oder gar Atome ablaufen, lassen sich damit nicht mehr auflösen.

Vielleicht könnte dem bald Abhilfe geschaffen werden. Zumindest den Berechnungen zufolge, die Forscher um Thomas Pfeifer am Max-Planck-Institut für Kernphysik angestellt haben. Demnach können zwei freie Teilwellen ein und desselben Elektrons ultrakurze Laserblitze erzeugen, wenn sie Atome oder Moleküle nur streifen. Dabei spüren sie zwar das Potenzial der Teilchen, werden aber nicht von ihm eingefangen. Bisher waren die Forscher davon ausgegangen, dass das Elektron mit dem Atomrumpf rekombinieren muss, um diese Art der Strahlung freizusetzen. Außerdem muss das Atom oder Molekül, dessen Potenzial die freien Elektronenwellen durchlaufen, nicht einmal ionisiert sein, um diesen Effekt hervorzurufen.

"Dies eröffnet ganz neue Möglichkeiten zur Strukturanalyse von hochkomplexen Molekülen", sagt Pfeifer. "Denn die emittierten ultrakurzen Laserblitze enthalten Informationen über den räumlichen Potenzialverlauf auch im tiefen Innern eines Atoms oder Moleküls." Die so erzeugte Strahlung könnten Forscher somit selbst schon als Sonde für die Potenzialstruktur verwenden, und dies, ohne in sie einzugreifen und diese womöglich zu verändern.

Ultrakurze Laserpulse erzeugen Physiker schon länger anhand einzelner Elektronen. Dabei machen sie sich die quantenmechanische Wellennatur dieser geladenen Teilchen zu Nutze. Sie erlaubt es ihnen, ein Elektron mit einem extrem starken Laserfeld teilweise von einem Atomrumpf zu lösen, während der restliche Teil desselben Elektrons am Atom verbleibt. Trifft der freie Anteil des Elektrons wieder auf sein Ion, interferiert dieser mit dem gebundenen Eleltronanteil und sendet einen ultrakurzen, kohärenten Lichtblitz aus. Dabei rekombiniert das Elektron wieder vollständig mit dem Ion.

Die so erzeugten Laserpulse von nur Femto- oder Attosekunden Länge (10-15 beziehungsweise 10-18 Sekunden) verwenden die Wissenschaftler, um zum Beispiel chemische Prozesse in Molekülen zu studieren. Allerdings erlaubt diese Methode bislang nur den Blick auf die äußersten elektronischen Schichten eines Moleküls. Der Einblick in tiefere Schichten bleibt noch verwehrt.

Die Berechnungen, die maßgeblich von Markus Kohler im Rahmen seiner Doktorarbeit am Max-Planck-Insitut für Kernphysik durchgeführt wurden, stellen nicht nur eine neue experimentelle Methode in Aussicht, die Aufschluss über die Tiefenstruktur von Molekülen geben könnte. Sie verallgemeinern auch das theoretische Verständnis, wie sich ultrakurze Laserpulse von zwei Wellenpaketen eines einzelnen Elektrons erzeugen lassen.

Originalveröffentlichung:

Markus C. Kohler, Christian Ott, Philipp Raith, Robert Heck, Iris Schlegel, Christoph H. Keitel, and Thomas Pfeifer
High Harmonic Generation Via Continuum Wave-Packet Interference
Physical Review Letters DOI:10.1103/PhysRevLett.105.203902
Weitere Informationen erhalten Sie von:
Dr. Thomas Pfeifer
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: + 49 6221 516-380
Fax: + 49 6221 516-601
E-Mail: thomas.pfeifer@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung
21.02.2017 | Forschungszentrum Jülich

nachricht Sternenmusik aus fernen Galaxien
21.02.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten