Untersuchungen mit dem Teleskopverbund ALMA haben dokumentiert, welches Rohmaterial seit der Frühzeit rund 2 Milliarden Jahre nach dem Urknall im Kosmos zur Verfügung stand. Die Beobachtungen unter der Leitung von Fabian Walter vom Max-Planck-Institut für Astronomie nahmen dazu das sogenannte Hubble Ultra Deep Field (HUDF) ins Visier, das erstmals 2003/2004 vom Weltraumteleskop Hubble bis ins Detail abgebildet wurde. Dies sind die ersten hochempfindlichen Beobachtungen des HUDF im Millimeterwellenbereich, die auch spektrale Informationen enthalten und die Galaxien zeigen können, deren Licht rund 11 Milliarden Jahre zu uns unterwegs war.
Schon seit kurz nach dem Urknall haben Galaxien in unserem Kosmos neue Sterne gebildet. Allerdings hat sich die Gesamt-Sternentstehungsrate über die Milliarden Jahre durchaus verändert, und in einigen Epochen war unser Kosmos ungleich produktiver als in anderen.
Auf der Spur dieser Geschichte haben Fabian Walter vom Max-Planck-Institut für Astronomie und seine Kollegen sich daran gemacht, mithilfe des ALMA-Observatoriums herauszufinden, wie viel an Rohmaterial für die Sternentstehung, sprich: wie viel molekularer Wasserstoff den Galaxien zu unterschiedlichen Epochen denn überhaupt zur Verfügung stand. Die Astronomen haben dazu eine der am besten untersuchten Himmelsregionen überhaupt beobachtet: das Hubble Ultra Deep Field (HUDF).
Dort haben sie unter anderem nach dem charakteristischen Licht gesucht, das die Anwesenheit von Kohlenstoffmonoxid verrät. Wo Kohlenstoffmonoxid, da auch molekularer Wasserstoff – das lässt sich sogar quantitativ formulieren, so dass Astronomen aus der Menge an nachgewiesenem Kohlenstoffmonoxid auf die Menge an molekularem Wasserstoff schließen können.
Da Sterne entstehen, wenn dichte Wolken aus molekularem Wasserstoff kollabieren, hängt die Sternentstehungsrate direkt mit der Verfügbarkeit von molekularem Wasserstoff, dem Rohmaterial für die Sternentstehung, zusammen.
Bislang haben Sternen-Historiker allerdings nicht das Rohmaterial, sondern andere Indikatoren ausgewertet, um Sternentstehungsraten zu bestimmen – insbesondere Licht bei charakteristischen Frequenzen, das ausgestrahlt wird, wenn Molekülwolken kollabieren, sich dabei aufheizen, und die Hitze in Form ganz bestimmter Spektrallinien abstrahlen.
Derartige Studien zeigen interessante Trends bei der Sternentstehung. In der Vergangenheit haben Galaxien insgesamt deutlich mehr Sterne produziert als heutzutage. Tatsächlich geht die Sternentstehungsrate (als Maß für diese Produktivität) seit einer Blütezeit rund drei bis 6 Milliarden Jahre nach dem Urknall stetig zurück. Während der Phase maximaler Produktivität wurde pro Jahr rund 10 Mal mehr Wasserstoff zu Sternen als zur Jetztzeit.
Die Hintergründe dieser Langzeitentwicklung sind derzeit noch unklar. Aber die neuen Beobachtungen können unserem Wissen über die Geschichte der Sternentstehung ein wichtiges Puzzleteil hinzufügen: Die Menge an molekularem Wasserstoff, die zu gegebener Zeit in Galaxien für die Sternentstehung zur Verfügung steht.
"Unsere neuen ALMA-Ergebnisse legen nahe: Je weiter wir in die Vergangenheit zurückblicken, umso mehr Gas finden wir in den Galaxien, die wir sehen" sagt Manuel Aravena, Astronom an der Universidad Diego Portales in Santiago in Chile und der Ko-Leiter des Astronomenteams. "Diese Zunahme an Gasgehalt dürfte der Grund für die beachtliche Zunahme der Sternentstehungsraten sein, die während des Höhepunkts der Galaxienentstehung vor rund 10 Milliarden Jahre einsetzte."
"Die kohlenstoffmonoxid-reichen Galaxien, die wir gefunden haben, leisten einen beachtlichen Beitrag zur gesamten Sternentstehungsgeschichte unseres Kosmos", sagt Roberto Decarli, Astronom am Max-Planck-Institut für Astronomie (MPIA) in Heidelberg und Mitglied des Forscherteams. "Mit ALMA steht uns jetzt ein neuer Weg offen, die frühe Entstehung und Entwicklung von Galaxien im Hubble Ultra Deep Field zu untersuchen."
Die Fragen danach, wie all dies im Detail funktioniert und welche Faktoren die Verfügbarkeit (oder eben nicht) molekularen Wasserstoffs beeinflussen, sind Leitfragen des großangelegten Beobachtungsprogramms (Large Observation Programs) mit ALMA, das Walter und seine Kollegen gerade bewilligt bekommen haben. Bei der Bewilligung haben auch die jetzt veröffentlichten Resultate eine Rolle gespielt. Fabian Walter sagt: "Die genauen Hintergründe der Geschichte der kosmischen Sternentstehung müssen wir erst noch verstehen. Unser jetzt bewilligtes ALMA Large Program wird die fehlenden Informationen über das Rohmaterial der Sternentstehung für Galaxien im berühmten Hubble Ultra Deep Field liefern. Das sind wichtige weitere Puzzlestücke für das Rätsel der Sternentstehung in unserem Universum."
Hintergrundinformationen
Die hier geschilderten Ergebnisse gehören zum ersten Teil des ASPECS-Projekts (The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field). Die Forscher präsentieren sie heute, am 22. September auf der Konferenz "Half a Decade of ALMA" in Palm Springs, Kalifornien. Die Ergebnisse sind außerdem als Serie von sieben Fachartikeln zur Veröffentlichung in der Fachzeitschrift Astrophysical Journal akzeptiert:
Walter F., Decarli R., Aravena M., et al. 2016: "ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description", accepted for publication in ApJ
Aravena M., Decarli R., Walter F., et al. 2016: "ALMA spectroscopic survey in the Hubble Ultra Deep Field: Continuum number counts, resolved 1.2-mm extragalactic background, and properties of the faintest dusty star forming galaxies", accepted for publication in ApJ
Decarli R., Walter F., Aravena M., et al. 2016: "ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular gas reservoirs in high-redshift galaxies", accepted for publication in ApJ
Decarli R., Walter F., Aravena M., et al. 2016: "ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular gas reservoirs in high-redshift galaxies", accepted for publication in ApJ
Aravena M., Decarli R., Walter F., et al. 2016: "ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] line and dust emission in 6<z<8 galaxies", accepted for publication in ApJ
Bouwens R., Aravena M., Decarli R., et al. 2016: "ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Infrared Excess of UV-selected z=2-10 galaxies as a function of UV-continuum Slope and Stellar Mass", accepted for publication in ApJ
Carilli C., Chluba J., Decarli R., et al. 2016: "ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: implications for spectral line intensity mapping at millimeter wavelengths and CMB spectral distortions", accepted for publication in ApJ
http://www.mpia.de/aktuelles/wissenschaft/2016-11-alma-udf - Online-Pressemitteilung mit ausführlicher Schilderung und weiteren Bildern
https://www.eso.org/public/germany/news/eso1633/ - Pressemitteilung der Europäischen Südsternwarte (ESO)
Dr. Markus Pössel | Max-Planck-Institut für Astronomie
Weitere Berichte zu: > ALMA > Galaxien > Hubble > Kohlenstoffmonoxid > Kosmos > Rohmaterial > Spectroscopic > Sternentstehung > Sternentstehungsrate
Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik
Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald
Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.
Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
Anzeige
Anzeige
Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0
23.04.2018 | Veranstaltungen
Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?
23.04.2018 | Veranstaltungen
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
23.04.2018 | Physik Astronomie
Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe
23.04.2018 | HANNOVER MESSE
Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Materialwissenschaften