Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Germanium wird lasertauglich

22.04.2013
Gute Nachrichten für die Computerindustrie: Einem Team von Forschern ist es gelungen, Germanium für Laser geeignet zu machen. Dadurch könnten künftig Teile eines Mikroprozessors mittels Licht kommunizieren – was die Rechner der Zukunft schneller und leistungsfähiger werden lässt.

Forscher von der ETH Zürich, dem Paul Scherrer Institut PSI und dem Politecnico di Milano haben gemeinsam eine Fabrikationstechnik entwickelt, mit der sie den Halbleiter Germanium durch starke Zugspannung lasertauglich machen können. In ihrer kürzlich in «Nature Photonics» erschienenen Publikation zeigen sie, wie sie die dazu benötigte Zugspannung auf effiziente Weise erzeugen können.

Die Wissenschaftler weisen nach, dass sie mit ihrer Methode die optischen Eigenschaften des an sich für Laser ungeeigneten Germaniums wirksam verändern können: «Bei einer Dehnung von drei Prozent gibt das Material rund 25 Mal mehr Photonen ab als im entspannten Zustand», erklärt Martin Süess, Doktorand am Laboratorium für Nanometallurgie von Professor Ralph Spolenak und dem EMEZ an der ETH Zürich.

«Das reicht aus, um damit Laser zu bauen», sagt sein Mitstreiter Richard Geiger, Doktorand am Labor für Mikro- und Nanotechnologie am PSI und dem Institut für Quantenelektronik der ETH Zürich unter Professor Jérôme Faist.

Starker Zug durch Mikro-Brücken
Um das Germanium mit der neuen Methode in seine laserfähige gestreckte Form zu bringen, nutzen die Forscher die leichte Spannung, die im Germanium entsteht, wenn es auf Silizium aufgedampft wird. Diese Vorspannung verstärken die Wissenschaftler durch sogenannte Mikro-Brücken: Sie kerben freigelegte Germaniumstreifen, die an beiden Enden auf der Siliziumschicht fixiert bleiben, in der Mitte von beiden Seiten tief ein. Die beiden Hälften des Streifens bleiben dadurch lediglich über einen äusserst schmalen Steg verbunden. Genau dort verstärkt sich die Dehnung des Germaniums aus physikalischen Gründen so sehr, dass es an dieser Stelle lasertauglich wird.

«Die Zugspannung, die auf das Germanium wirkt, ist vergleichbar mit der Kraft, die auf einen Bleistift wirkt, an dem zwei Lastwagen in entgegengesetzte Richtungen ziehen», überträgt Hans Sigg, Projektleiter vom PSI, den Kraftakt im Mikrometerbereich auf Alltags-Grössenverhältnisse. Die Materialeigenschaften verändern sich, weil die einzelnen Atome durch die Dehnung des Materials ein wenig auseinanderrücken. Dadurch wird es für die Elektronen möglich, auf Energieniveaus zu gelangen, die für die Entstehung von Lichtteilchen, sogenannten Photonen, günstig sind.

Germanium-Laser für die Rechner der Zukunft
Die Methode des interdisziplinären Forscherteams könnte die Leistung kommender Computergenerationen bedeutend steigern. Denn um die Rechnerleistung zu verbessern, wurden vor allem Computerchips stetig verkleinert und immer dichter gepackt. Doch dieser Ansatz wird in absehbarer Zeit an seine Grenzen stossen. «Um Leistung und Geschwindigkeit weiter zu steigern, müssen die einzelnen Komponenten in Zukunft vor allem stärker verknüpft werden und effizienter miteinander kommunizieren», erklärt Süess. Dafür sind allerdings neue und schnellere Übertragungswege nötig als heute, wo die Signale noch via Strom und Kupferkabel übermittelt werden.
«Der Ansatz der Zukunft heisst Licht», sagt Geiger. Doch um dieses für die Übermittlung von Daten nutzen zu können, braucht es zuerst Lichtquellen, die so klein sind, dass sie auf einen Chip passen und sich mit Silizium, dem Grundmaterial aller Computerchips vertragen. Silizium selbst taugt nicht für die Erzeugung von Laserlicht. Das ist denn auch der Grund, wieso den Forschern viel daran liegt, Germanium laserfähig zu machen: «Germanium ist mit Silizium bestens kompatibel und wird bereits heute in der Computerindustrie bei der Herstellung von Siliziumchips verwendet», erklärt Geiger. Sollte es gelingen, mit der neuen Methode aus Germanium winzige Laser zu bauen, rückt ein Systemwechsel in greifbare Nähe. «Wir sind auf gutem Weg», sagt Süess. Das internationale Forscherteam ist momentan dabei, mit der neuen Methode tatsächlich einen Germanium-Laser zu bauen.

Original: Süess MJ, Geiger R, Minamisawa RA, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J & Sigg H: Analysis of enhanced light emission from highly strained germanium microbridges. Nature Photonics. 2013. Published online: 14 April 2013 doi:10.1038/nphoton.2013.67.

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch/media/detail?pr_id=1152

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

nachricht Extrem helle und schnelle Lichtemission
11.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein „intelligentes Fieberthermometer“ für Mikrochips

16.01.2018 | Informationstechnologie

Diagnostik der Zukunft - Europäisches Projekt zur Erforschung seltener Krankheiten startet

16.01.2018 | Förderungen Preise

Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

16.01.2018 | Biowissenschaften Chemie