Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Germanium wird lasertauglich

22.04.2013
Gute Nachrichten für die Computerindustrie: Einem Team von Forschern ist es gelungen, Germanium für Laser geeignet zu machen. Dadurch könnten künftig Teile eines Mikroprozessors mittels Licht kommunizieren – was die Rechner der Zukunft schneller und leistungsfähiger werden lässt.

Forscher von der ETH Zürich, dem Paul Scherrer Institut PSI und dem Politecnico di Milano haben gemeinsam eine Fabrikationstechnik entwickelt, mit der sie den Halbleiter Germanium durch starke Zugspannung lasertauglich machen können. In ihrer kürzlich in «Nature Photonics» erschienenen Publikation zeigen sie, wie sie die dazu benötigte Zugspannung auf effiziente Weise erzeugen können.

Die Wissenschaftler weisen nach, dass sie mit ihrer Methode die optischen Eigenschaften des an sich für Laser ungeeigneten Germaniums wirksam verändern können: «Bei einer Dehnung von drei Prozent gibt das Material rund 25 Mal mehr Photonen ab als im entspannten Zustand», erklärt Martin Süess, Doktorand am Laboratorium für Nanometallurgie von Professor Ralph Spolenak und dem EMEZ an der ETH Zürich.

«Das reicht aus, um damit Laser zu bauen», sagt sein Mitstreiter Richard Geiger, Doktorand am Labor für Mikro- und Nanotechnologie am PSI und dem Institut für Quantenelektronik der ETH Zürich unter Professor Jérôme Faist.

Starker Zug durch Mikro-Brücken
Um das Germanium mit der neuen Methode in seine laserfähige gestreckte Form zu bringen, nutzen die Forscher die leichte Spannung, die im Germanium entsteht, wenn es auf Silizium aufgedampft wird. Diese Vorspannung verstärken die Wissenschaftler durch sogenannte Mikro-Brücken: Sie kerben freigelegte Germaniumstreifen, die an beiden Enden auf der Siliziumschicht fixiert bleiben, in der Mitte von beiden Seiten tief ein. Die beiden Hälften des Streifens bleiben dadurch lediglich über einen äusserst schmalen Steg verbunden. Genau dort verstärkt sich die Dehnung des Germaniums aus physikalischen Gründen so sehr, dass es an dieser Stelle lasertauglich wird.

«Die Zugspannung, die auf das Germanium wirkt, ist vergleichbar mit der Kraft, die auf einen Bleistift wirkt, an dem zwei Lastwagen in entgegengesetzte Richtungen ziehen», überträgt Hans Sigg, Projektleiter vom PSI, den Kraftakt im Mikrometerbereich auf Alltags-Grössenverhältnisse. Die Materialeigenschaften verändern sich, weil die einzelnen Atome durch die Dehnung des Materials ein wenig auseinanderrücken. Dadurch wird es für die Elektronen möglich, auf Energieniveaus zu gelangen, die für die Entstehung von Lichtteilchen, sogenannten Photonen, günstig sind.

Germanium-Laser für die Rechner der Zukunft
Die Methode des interdisziplinären Forscherteams könnte die Leistung kommender Computergenerationen bedeutend steigern. Denn um die Rechnerleistung zu verbessern, wurden vor allem Computerchips stetig verkleinert und immer dichter gepackt. Doch dieser Ansatz wird in absehbarer Zeit an seine Grenzen stossen. «Um Leistung und Geschwindigkeit weiter zu steigern, müssen die einzelnen Komponenten in Zukunft vor allem stärker verknüpft werden und effizienter miteinander kommunizieren», erklärt Süess. Dafür sind allerdings neue und schnellere Übertragungswege nötig als heute, wo die Signale noch via Strom und Kupferkabel übermittelt werden.
«Der Ansatz der Zukunft heisst Licht», sagt Geiger. Doch um dieses für die Übermittlung von Daten nutzen zu können, braucht es zuerst Lichtquellen, die so klein sind, dass sie auf einen Chip passen und sich mit Silizium, dem Grundmaterial aller Computerchips vertragen. Silizium selbst taugt nicht für die Erzeugung von Laserlicht. Das ist denn auch der Grund, wieso den Forschern viel daran liegt, Germanium laserfähig zu machen: «Germanium ist mit Silizium bestens kompatibel und wird bereits heute in der Computerindustrie bei der Herstellung von Siliziumchips verwendet», erklärt Geiger. Sollte es gelingen, mit der neuen Methode aus Germanium winzige Laser zu bauen, rückt ein Systemwechsel in greifbare Nähe. «Wir sind auf gutem Weg», sagt Süess. Das internationale Forscherteam ist momentan dabei, mit der neuen Methode tatsächlich einen Germanium-Laser zu bauen.

Original: Süess MJ, Geiger R, Minamisawa RA, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J & Sigg H: Analysis of enhanced light emission from highly strained germanium microbridges. Nature Photonics. 2013. Published online: 14 April 2013 doi:10.1038/nphoton.2013.67.

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch/media/detail?pr_id=1152

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie