Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

GERDA-Experiment: Beste Aussichten für den Nachweis eines extrem seltenen radioaktiven Zerfalls

06.04.2017

Warum gibt es im Universum mehr Materie als Antimaterie? Die Ursache dafür vermuten Physiker in den Eigenschaften des Neutrinos: Die Elementarteilchen könnten ihre eigenen Antiteilchen sein und dann sollte ein extrem seltener radioaktiver Zerfall existieren: der neutrinolose doppelte Betazerfall (0νββ). Bei der Suche nach diesem sehr speziellen Kernzerfall hat das GERDA Experiment einen sehr wichtigen Fortschritt erzielt: Die GERDA-Wissenschaftler konnten die Anzahl an Störsignalen – auch Untergrund genannt – so weit reduzieren, dass GERDA jetzt das erste Experiment auf diesem Gebiet ohne Störsignale ist, wie Nature berichtet.

Neutrinos sind sehr schwer nachzuweisende Teilchen. Sie spielen eine wichtige Rolle in Prozessen in der Sonne, bei Supernova-Explosionen und der Entstehung der ersten Elemente im Universum. Die Erforschung ihrer Eigenschaften hat unser Verständnis dieser Elementarteilchen deutlich erweitert – wie etwa die vier Nobel-preise für Neutrino-Forschung belegen.


Blick von unten in das GERDA-Experiment: Zu erkennen sind die Faserhülle des Flüssigargon-Vetos und der Kupferkopf, an dem die Aufhängung mit Germanium-Detektoren befestigt wird.

V. Wagner/GERDA collaboration


Vorbereitung des GERDA-Experiments: Die Detektoren werden in den mit flüssigen Argon gefüllten Tank abgesenkt - Blick von oben.

M. Heisel/GERDA collaboration

Eine grundlegende Frage ist allerdings noch offen: Sind Neutrinos Majorana-Teilchen, also ihre eigenen Antiteilchen? In diesem Fall würde der 0νββ-Zerfall existieren. Die theoretische Physik liefert dafür starke Argumente, und auch das Fehlen von Antimaterie im Universum ließe sich auf die Majorana-Natur des Neutrinos zurückzuführen.

Der "normale" doppelte Betazerfall ist ein seltenes Ereignis. Dabei zerfallen zwei Neutronen gleichzeitig in zwei Protonen, zwei Elektronen und zwei Antineutrinos. Er wurde bei einigen Kernen wie Germanium-76 nachgewiesen, bei denen kein einfacher Beta-Zerfall möglich ist. Die Elektronen und Antineutrinos verlassen den Kern, wobei sich nur die Elektronen nachweisen lassen. Dagegen verlassen beim 0νββ-Zerfall keine Neutrinos den Kern und die Summe der Energien der Elektronen entspricht einem gut bekannten Wert. Dessen Messung ist der entscheidende Nachweis des 0νββ-Zerfalls.

Aufgrund der weitreichenden Konsequenzen für unser Verständnis der Elementarteilchen und der Kosmologie gibt es weltweit rund ein Dutzend Experimente die mit unterschiedlichen Techniken und Isotopen nach dem 0νββ-Zerfall suchen. Das GERDA-Experiment ist eines der führenden Experimente auf diesem Gebiet und wird von einem europäischen Forschungsverbund durchgeführt. Es befindet sich im Untergrundlabor Laboratori Nazionali del Gran Sasso der italienischen Forschungseinrichtung INFN (https://www.lngs.infn.it).

GERDA arbeitet mit hochreinen Germaniumdetektoren, die mit dem Isotop Ger-manium-76 angereichert sind. Germanium ist gleichzeitig das Material für die Quelle des Zerfalls und für den Detektor zum Nachweis. Außerdem werden nur wenige zusätzliche Materialien benötigt; das führt zu einem geringen Untergrund und einer hohen Nachweiseffizienz.

Die ausgezeichnete Energieauflösung der Detektoren und die neuartigen experimentellen Techniken haben zu einer bisher unerreichten Unterdrückung von Störereignissen geführt. Da die Halbwertszeit für den 0νββ-Zerfall um viele Größenordnungen größer ist als das Alter des Universums, ist die Reduzierung von Untergrundereignissen entscheidend für die Nachweisempfindlichkeit des Experiments.

Die Germaniumdetektoren werden in einem 64 Kubikmeter großen Behälter betrieben, der mit flüssigem Argon mit einer Temperatur von minus 186 Grad Celsius gefüllt ist. Dieser befindet sich in einem 590 Kubikmeter großen Tank mit hochreinem Wasser. Dieser Aufbau wird vom Bergmassiv des Gran Sasso vor kosmischer Strahlung abgeschirmt.

Das verwendete Argon und Wasser eignen sich gut zur Abschirmung der natürlichen Radioaktivität der Umgebung. Aufgrund ihrer Reinheit tragen sie selbst nur geringfügig zum Untergrund bei. Die Instrumentierung mit lichtempfindlichen Detektoren in beiden Flüssigkeiten bietet weitere Möglichkeiten für die Identifizierung von Untergrund.

Mittels dieser Innovationen konnten Untergrundereignisse so weit reduziert werden, dass GERDA nun das erste Untergrund-freie Experiment auf diesem Gebiet ist. In den ersten fünf Monaten der Messlaufzeit wurde kein 0νββ-Zerfall registriert, woraus sich eine neue untere Grenze für die Halbwertszeit des Zerfalls von 5 mal 10 hoch 25 Jahre ableiten lässt.

Bis zum Ende der Messungen im Jahr 2019 sollte sich im entscheidenden Energiebereich kein Untergrundsignal zeigen und sich die Messempfindlichkeit auf 10 hoch 26 Jahre erhöhen. GERDA ist somit bestens gerüstet, das Signal eines 0νββ-Zerfalls zu messen, das sich durch eine geringe Anzahl von Ereignissen im erwarteten Energiebereich zeigen würde.

GERDA ist ein europäischer Zusammenschluss von über 100 Physikerinnen und Physikern aus Deutschland, Italien, Russland, der Schweiz, Polen und Belgien (http://www.mpi-hd.mpg.de/gerda).

In Deutschland beteiligte Institute: Technische Universität Dresden, Max-Planck-Institut für Kernphysik, Max-Planck-Institut für Physik, Technische Universität München, Eberhard Karls Universität Tübingen.

Originalpublikation:
GERDA Collaboration: Background-free search for neutrinoless double-β decay of 76-Ge with GERDA; Nature, 06 April 2017
DOI: 10.1038/nature21717

Daten, Bilder, Fotos: https://www.mpi-hd.mpg.de/gerda/public/index.html

Ansprechpartner:
Prof. Dr. Kai Zuber
Institut für Kern- und Teilchenphysik
Technische Universität Dresden
E-Mail: zuber@physik.tu-dresden.de
Tel.: +49 351 463 42250

Dr. Bernhard Schwingenheuer
GERDA Sprecher
Max-Planck-Institut für Kernphysik (MPIK), Heidelberg
E-Mail: bernhard.schwingenheuer@mpi-hd.mpg.de
Tel.: +49 6221 516 614

Dr. Bela Majorovits
Max-Planck-Institut für Physik, München
E-Mail: bela@mpp.mpg.de
Tel.: +49 89 323 54 262

Prof. Dr. Stefan Schönert
GERDA Co-Sprecher
Physik Department und Exzellenzcluster Universe
Technische Universität München
E-Mail: schoenert@ph.tum.de
Tel.: +49 89 289 12511

Prof. Dr. Josef Jochum
Physikalisches Institut
Eberhard Karls Universität Tübingen
E-Mail: Josef.Jochum@uni-tuebingen.de
Tel.: +49 7071 29 74453

Weitere Informationen:

http://www.mpi-hd.mpg.de/gerda
http://www.mpi-hd.mpg.de/gerda/public/index.html

Petra Riedel | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie