Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gequetschtes Licht von einzelnen Atomen

30.06.2011
Forscher am MPQ erzeugen mit in optischen Resonatoren gefangenen Atomen Lichtfelder, deren Amplitude schärfer ist als klassisch erlaubt.

Die klassische Optik behandelt Licht gewöhnlich als eine Welle. Aber betrachtet man Licht auf fundamentalem Quantenniveau, dann besteht diese Welle aus diskreten Teilchen, auch Photonen genannt.


Ein einzelnes, in einem Resonator gefangene Atom quetscht die Quantenfluktuationen eines schwachen Laserstrahls, indem es z.B. wie hier die Amplitudenfluktuationen reduziert. (Der Effekt ist zur Verdeutlichung übertrieben dargestellt.)

Im Laufe der Zeit haben die Physiker viele Wege gefunden, sowohl die wellenähnlichen als auch die teilchenähnlichen Quanteneigenschaften von Licht zu manipulieren. So nutzen sie z.B. die Eigenschaften von Atomen, einzelne Lichtquanten zu absorbieren und auszusenden, für die Entwicklung von Einzel-Photonenquellen.

Ein Team um Professor Gerhard Rempe, Direktor am MPQ und Leiter der Abteilung Quantendynamik, hat nun gezeigt, dass die von einzelnen Atomen ausgesandten Lichtfelder eine sehr komplexe Dynamik aufweisen können (Nature 474, 623, 30. Juni 2011). Wird das Atom stark an ein Lichtfeld in einem optischen Resonator gekoppelt, ändert es die wellenähnlichen Eigenschaften des Lichtfeldes: dabei „quetscht“ es entweder die Phase oder die Amplitude der Lichtfelder so stark, dass sie weniger fluktuieren als es für klassische elektromagnetische Strahlung erlaubt ist. Solche „gequetschten“ Lichtzustände wurden hier erstmals mit einzelnen Atomen erzeugt.

Die auf der Quantennatur des Lichtes beruhende körnige Struktur der Lichtwellen führt zu kleinen Fluktuationen in der Phase und der Amplitude der Welle. Bei klassischen Lichtstrahlen verteilt sich diese Unschärfe gleichmäßig auf beide Größen. Durch Wechselwirkung der Photonen miteinander lässt sich aber entweder die Amplitude oder die Phase auf Kosten der jeweils anderen Komponente unterhalb dieses sogenannten Grundrauschens drücken. Allerdings sind diese Wechselwirkungen zwischen Photonen in gewöhnlichen optischen Medien sehr schwach, so dass für die Erzeugung „gequetschter Zustände“ sehr intensive Lichtstrahlen erforderlich sind.

Einzelne Atome sollten dagegen gequetschtes Licht bereits durch Wechselwirkung mit wenigen Photonen erzeugen können; dies wurde auch vor rund 30 Jahren vorhergesagt. Aber da bei diesem Vorgang extrem wenig Licht emittiert wird, waren bislang alle Versuche der experimentellen Realisierung an technischen Schwierigkeiten gescheitert. Die in der Abteilung Quantendynamik am MPQ seit Jahren entwickelten ausgefeilten Methoden für die Kühlung, Isolation und Manipulation einzelner Atome haben die hier beschriebene Beobachtung nun ermöglicht.

Ein einzelnes Rubidiumatom wird in einer Falle gefangen, die aus zwei Spiegeln höchster Güte in einem Abstand von ungefähr einem Zehntel Millimeter besteht. Wenn schwaches Laserlicht in diesen kleinen Bereich eingestrahlt wird, kann das Atom mit einem Photon viele Male in Wechselwirkung treten und bildet somit eine Art künstliches Molekül mit den Photonen des Lichtfeldes. Als Konsequenz daraus können zwei Photonen gleichzeitig in das System gelangen, wobei sie – durch die Wechselwirkung mit dem Atom – korreliert werden. „Nach dem Bohr’schen Atommodell sendet ein einzelnes Atom genau ein einziges Energiequant, ein Photon, aus. Die Photonenzahl ist also eindeutig, die Phase des Lichtes ist aber völlig unbestimmt“, erklärt Prof. Gerhard Rempe. „Die beiden Photonen, die von diesem – an den Resonator gekoppelten – Atom emittiert werden, sind dagegen nicht unterscheidbar, sondern schwingen gemeinsam. Daher werden jetzt die wellenähnlichen Eigenschaften des Lichtfeldes beeinflusst.“

Regen die Physiker das System mit Licht aus einem Laser an, der auf die Anregungsfrequenz des einzelnen Atoms abgestimmt ist, dann zeigen die Messungen, dass die Phase des emittierten Lichtfeldes „gequetscht“ ist, d.h. die Fluktuationen verglichen mit der klassisch erlaubten Breite reduziert sind. Strahlen sie Licht mit der Resonanzfrequenz des Spiegelsystems ein, dann erhalten sie eine entsprechende „Quetschung“ der Amplitude.

Abb. 1 veranschaulicht diesen Vorgang: Das einzelne Atom in dem Resonator verwandelt die Laserstrahlen in Licht, das kleinere Amplituden-, dafür aber stärkere Phasenfluktuationen hat als dem Grundrauschen entspricht. „Unser Experiment zeigt, dass das Licht, das von einzelnen Atomen ausgesandt wird, sehr viel komplexere Eigenschaften hat als in dem einfachen Bild von Albert Einstein über die Photoemission“, betont Dr. Karim Murr. „Die nachgewiesene Quetschung ist auf die von dem Atom vermittelte kohärente Wechselwirkung zwischen den beiden von dem System ausgesandten Photonen zurückzuführen. Unsere Messung ist in exzellenter Übereinstimmung mit den Erwartungen der Quantenelektrodynamik für starke Kopplung.“ Und Dr. Alexei Ourjoumtsev, der als Postdoc an dem Experiment gearbeitet hat, ergänzt: „Normalerweise beeinflussen einzelne Quantenobjekte die teilchenähnlichen Eigenschaften von Licht. Interessanterweise können sie aber auch die wellenähnlichen Eigenschaften verändern, wie die hier gemessene Quetschung des – im Durchschnitt zwei Photonen enthaltenden – Laserlichts zeigt.“

Bislang waren für die Beobachtung von „gequetschtem“ Licht Systeme aus vielen Atomen, wie z.B. optisch nichtlineare Kristalle, und hohe Laserintensitäten, also sehr viele Photonen, notwendig. Erstmals ist es hier dagegen gelungen, diese nicht-klassischen Lichtzustände mit einzelnen Atomen und extrem schwachen Lichtfeldern zu erzeugen. Die Möglichkeit, dass ein einzelnes Atom starke kohärente Wechselwirkungen zwischen Photonen induzieren kann, eröffnet neue Anwendungsperspektiven für photonische Quantenlogik mit einzelnen Quantenemittern.

Originalveröffentlichung:
A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P. W. H. Pinkse, G. Rempe, & K. Murr
Observation of squeezed light from one atom excited with two photons
Nature 474, 623,30. Juni 2011.
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Karim Murr
Max-Planck-Institut für Quantenoptik
E-Mail: karim.murr@mpq.mpg.de
Dr. Alexei Ourjoumtsev
Laboratoire Charles Fabry de l’Institut d’Optique,
2 av. Augustin Fresnel, RD 128,
F-91127 Palaiseau, France
Phone : +33 1 64 53 33 82
e-mail: alexei.ourjoumtsev@institutoptique.fr

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie