Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gequetschter Laser soll Gravitationswellen ans Licht bringen

12.09.2011
Dank eines Quantenphänomens messen Detektoren, die Schwingungen der Raum-Zeit nachspüren, um 50 Prozent genauer

Messen an den Grenzen der Naturgesetze – dieser Herausforderung stellen sich die Forscher bei der Suche nach Gravitationswellen immer wieder. Die hierbei eingesetzten Interferometer etwa messen so empfindlich, dass ein bestimmtes Quantenphänomen des Lichts – das Schrotrauschen – die Messgenauigkeit einschränkt. Mit der Methode des „Squeezed Light“ nutzen Max-Planck- und Uniwissenschaftler aus Hannover im Gegenzug ebenfalls die Quantenphysik, um den störenden Effekt zu beseitigen. Das neuartige Laserlicht erhöht die Messgenauigkeit des Gravitationswellendetektors GEO600 um 50 Prozent und steigert so seine effektive Empfindlichkeit. Damit kommt diese Technologie auch erstmals weltweit außerhalb eines Testlabors zur Anwendung. Die Ergebnisse werden im Fachjournal Nature Physics am 11. September vorab online veröffentlicht.


Der neue Quetschlichtlaser von GEO600. Ein hochkomplexes Lasersystem erzeugt im Gravitationswellendetektor besonders ruhiges Licht. © Albert-Einstein-Institut

Rund 50 Jahre nach der Entwicklung des ersten Lasers lässt sich mit der Technologie des gequetschten Lichts („squeezed light“) eine ganz neue Qualität von Laserlicht erzeugen. Das Licht aus einem Quetschlichtlaser strahlt sehr viel ruhiger als solches aus einer herkömmlichen Laserquelle. „Dank des Quetschlichtlasers konnten wir die Messempfindlichkeit von GEO600 um das 1,5-fache steigern“, sagt Hartmut Grote, der den Detektorbetrieb leitet. „Die neuartige Lichtquelle erfüllt alle Anforderungen wie erwartet.“ In Zukunft ließe sich die Messgenauigkeit mit dieser Technologie sogar verdoppeln. Bei der Suche nach den nur schwer detektierbaren Gravitationswellen ist diese Steigerung der Empfindlichkeit ein wichtiger Schritt zu deren direktem Nachweis.

Mit dem Experiment GEO600 am Exzellenzcluster QUEST (Center for Quantum Engineering and Space-Time Research)sind die Forscher vom Max-Planck-Institut für Gravitationsphysik (Teilinstitut Hannover, Albert-Einstein-Institut/AEI) und vom Institut für Gravitationsphysik der Leibniz Universität Hannover innerhalb der internationalen LIGO Virgo Collaboration (LVC) Gravitationswellen auf der Spur. Diese Schwingungen der Raum-Zeit sagte Einstein vor rund einem Jahrhundert in seiner Allgemeinen Relativitätstheorie vorher. Sie entstehen etwa bei turbulenten kosmischen Ereignissen wie Supernova-Explosionen.

Gravitationswellen machen sich auf der Erde jedoch kaum bemerkbar. Zum einen ist die Wechselwirkung zwischen Materie und Raum sehr schwach. Änderungen im Raum-Zeit-Gefüge, die in unserer nächsten astronomischen Umgebung durch Bewegungen verhältnismäßig massearmer Objekte wie Mond oder Planeten entstehen, liegen weit unterhalb des Messbaren. Turbulente Supernova-Explosionen, die die Raum-Zeit gewaltig durchschütteln, ereignen sich dagegen in großer Entfernung. Die dabei erzeugten Gravitationswellen erreichen die Erde deutlich abgeschwächt. Nur um rund ein Tausendstel eines Protondurchmessers würde sich die relative Messstrecke in einem Gravitationswellen-Detektor ändern, wenn sich eine Supernova innerhalb unserer Milchstraße ereignet. Mit GEO600 sind die Wissenschaftler inzwischen in der Lage, solche Längendifferenzen zu messen.

Laserlicht mit konstanter Intensität

Um so akkurat messen zu können, sind die Physiker auf möglichst störungsfreie Messtechnologien angewiesen. Einer der bisher störenden Effekte ist das sogenannte Schrotrauschen. Aufgrund ihrer Quantennatur prasseln die Photonen in zeitlich ungleichmäßigen Abständen auf die Photodiode im Detektor ein. Im Signal zeigt sich dies als fluktuierende Hintergrundhelligkeit. Eine Schwingung der Raum-Zeit, die eine ähnlich schwache Helligkeitsänderung hervorruft wie das Schrotrauschen, ist daher nur schwer auszumachen.

Roman Schnabel hat nun mit seiner Arbeitsgruppe in Hannover eine spezielle Lichtquelle entwickelt, mit der sich das störende Schrotrauschen eindämmen lässt. Eingebaut in GEO600 verhilft der Quetschlichtlaser dem Gravitationswellendetektor zu neuer Messempfindlichkeit. Damit ist GEO600 der erste Detektor, dessen Signalstrahl mit dem neuartigen Laserlicht geglättet wird.

Nach der Heisenbergschen Unschärferelation sind Intensität und Farbe eines Laserstrahls nicht gleichzeitig beliebig genau definierbar. Je exakter etwa die Intensität (genauer: Amplitude) festgelegt ist, umso unschärfer wird die Farbe (genauer: Phase). Diesen Effekt machen sich die Quantenphysiker zunutze, um das Schrotrauschen in dem GEO600-Experiment zu minimieren. Denn tatsächlich ist das Schrotrauschen nichts weiter als eine Ungenauigkeit der Laserintensität. Sie bereiten das Laserlicht derart auf, dass seine Intensität sehr genau definiert ist, also möglichst keine Schwankungen zeigt. Diesen Vorgang nennen die Fachleute auch „quetschen“. Dass die Lichtfarbe dabei ungenauer, also ein klein wenig „bunter“ wird, ist bei diesem Experiment nicht von Bedeutung, da diese Größe nicht in die Messdaten eingeht.

„Wir speisen das gequetschte Licht jetzt zusätzlich zu unserem normalen Laserlicht in das Interferometer ein“, erklärt Schnabel. „Wenn sich dann beide Lichtfelder überlagern, weist der resultierende Laserstrahl eine deutlich gleichmäßigere Intensität, verglichen mit dem ursprünglichen Signalstrahl, auf. „Auf diese Weise nivellieren wir die quantenphysikalisch bedingten Unregelmäßigkeiten im Detektorsignal“, so Schnabel weiter.

Nach einer längeren Testphase seit April vergangenen Jahres bei GEO600 kommt der Quetschlichtlaser jetzt bei der Suche nach Gravitationswellen zum Einsatz. Damit hat die Technologie des gequetschten Lichts die Feuerprobe in der Anwendung bestanden. Demnächst planen auch die amerikanischen Kollegen innerhalb der LVC, einen Quetschlichtlaser an den LIGO-Detektoren zu testen.

Ansprechpartner

Dr. Roman Schnabel
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-19169
E-Mail: roman.schnabel@aei.mpg.de
Dr. Hartmut Grote
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-6133
E-Mail: hartmut.grote@aei.mpg.de
Dr. Felicitas Mokler
Public Relations
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17098
E-Mail: felicitas.mokler@aei.mpg.de
Publikationsreferenz
Roman Schnabel und Hartmut Grote für die LIGO Virgo Science Collaboration
A gravitational wave observatory operating beyond the quantum shot-noise limit
Nature Physics advance online publication, 11. September 2011

Dr. Roman Schnabel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4414996

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik