Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gequetschter Laser soll Gravitationswellen ans Licht bringen

12.09.2011
Dank eines Quantenphänomens messen Detektoren, die Schwingungen der Raum-Zeit nachspüren, um 50 Prozent genauer

Messen an den Grenzen der Naturgesetze – dieser Herausforderung stellen sich die Forscher bei der Suche nach Gravitationswellen immer wieder. Die hierbei eingesetzten Interferometer etwa messen so empfindlich, dass ein bestimmtes Quantenphänomen des Lichts – das Schrotrauschen – die Messgenauigkeit einschränkt. Mit der Methode des „Squeezed Light“ nutzen Max-Planck- und Uniwissenschaftler aus Hannover im Gegenzug ebenfalls die Quantenphysik, um den störenden Effekt zu beseitigen. Das neuartige Laserlicht erhöht die Messgenauigkeit des Gravitationswellendetektors GEO600 um 50 Prozent und steigert so seine effektive Empfindlichkeit. Damit kommt diese Technologie auch erstmals weltweit außerhalb eines Testlabors zur Anwendung. Die Ergebnisse werden im Fachjournal Nature Physics am 11. September vorab online veröffentlicht.


Der neue Quetschlichtlaser von GEO600. Ein hochkomplexes Lasersystem erzeugt im Gravitationswellendetektor besonders ruhiges Licht. © Albert-Einstein-Institut

Rund 50 Jahre nach der Entwicklung des ersten Lasers lässt sich mit der Technologie des gequetschten Lichts („squeezed light“) eine ganz neue Qualität von Laserlicht erzeugen. Das Licht aus einem Quetschlichtlaser strahlt sehr viel ruhiger als solches aus einer herkömmlichen Laserquelle. „Dank des Quetschlichtlasers konnten wir die Messempfindlichkeit von GEO600 um das 1,5-fache steigern“, sagt Hartmut Grote, der den Detektorbetrieb leitet. „Die neuartige Lichtquelle erfüllt alle Anforderungen wie erwartet.“ In Zukunft ließe sich die Messgenauigkeit mit dieser Technologie sogar verdoppeln. Bei der Suche nach den nur schwer detektierbaren Gravitationswellen ist diese Steigerung der Empfindlichkeit ein wichtiger Schritt zu deren direktem Nachweis.

Mit dem Experiment GEO600 am Exzellenzcluster QUEST (Center for Quantum Engineering and Space-Time Research)sind die Forscher vom Max-Planck-Institut für Gravitationsphysik (Teilinstitut Hannover, Albert-Einstein-Institut/AEI) und vom Institut für Gravitationsphysik der Leibniz Universität Hannover innerhalb der internationalen LIGO Virgo Collaboration (LVC) Gravitationswellen auf der Spur. Diese Schwingungen der Raum-Zeit sagte Einstein vor rund einem Jahrhundert in seiner Allgemeinen Relativitätstheorie vorher. Sie entstehen etwa bei turbulenten kosmischen Ereignissen wie Supernova-Explosionen.

Gravitationswellen machen sich auf der Erde jedoch kaum bemerkbar. Zum einen ist die Wechselwirkung zwischen Materie und Raum sehr schwach. Änderungen im Raum-Zeit-Gefüge, die in unserer nächsten astronomischen Umgebung durch Bewegungen verhältnismäßig massearmer Objekte wie Mond oder Planeten entstehen, liegen weit unterhalb des Messbaren. Turbulente Supernova-Explosionen, die die Raum-Zeit gewaltig durchschütteln, ereignen sich dagegen in großer Entfernung. Die dabei erzeugten Gravitationswellen erreichen die Erde deutlich abgeschwächt. Nur um rund ein Tausendstel eines Protondurchmessers würde sich die relative Messstrecke in einem Gravitationswellen-Detektor ändern, wenn sich eine Supernova innerhalb unserer Milchstraße ereignet. Mit GEO600 sind die Wissenschaftler inzwischen in der Lage, solche Längendifferenzen zu messen.

Laserlicht mit konstanter Intensität

Um so akkurat messen zu können, sind die Physiker auf möglichst störungsfreie Messtechnologien angewiesen. Einer der bisher störenden Effekte ist das sogenannte Schrotrauschen. Aufgrund ihrer Quantennatur prasseln die Photonen in zeitlich ungleichmäßigen Abständen auf die Photodiode im Detektor ein. Im Signal zeigt sich dies als fluktuierende Hintergrundhelligkeit. Eine Schwingung der Raum-Zeit, die eine ähnlich schwache Helligkeitsänderung hervorruft wie das Schrotrauschen, ist daher nur schwer auszumachen.

Roman Schnabel hat nun mit seiner Arbeitsgruppe in Hannover eine spezielle Lichtquelle entwickelt, mit der sich das störende Schrotrauschen eindämmen lässt. Eingebaut in GEO600 verhilft der Quetschlichtlaser dem Gravitationswellendetektor zu neuer Messempfindlichkeit. Damit ist GEO600 der erste Detektor, dessen Signalstrahl mit dem neuartigen Laserlicht geglättet wird.

Nach der Heisenbergschen Unschärferelation sind Intensität und Farbe eines Laserstrahls nicht gleichzeitig beliebig genau definierbar. Je exakter etwa die Intensität (genauer: Amplitude) festgelegt ist, umso unschärfer wird die Farbe (genauer: Phase). Diesen Effekt machen sich die Quantenphysiker zunutze, um das Schrotrauschen in dem GEO600-Experiment zu minimieren. Denn tatsächlich ist das Schrotrauschen nichts weiter als eine Ungenauigkeit der Laserintensität. Sie bereiten das Laserlicht derart auf, dass seine Intensität sehr genau definiert ist, also möglichst keine Schwankungen zeigt. Diesen Vorgang nennen die Fachleute auch „quetschen“. Dass die Lichtfarbe dabei ungenauer, also ein klein wenig „bunter“ wird, ist bei diesem Experiment nicht von Bedeutung, da diese Größe nicht in die Messdaten eingeht.

„Wir speisen das gequetschte Licht jetzt zusätzlich zu unserem normalen Laserlicht in das Interferometer ein“, erklärt Schnabel. „Wenn sich dann beide Lichtfelder überlagern, weist der resultierende Laserstrahl eine deutlich gleichmäßigere Intensität, verglichen mit dem ursprünglichen Signalstrahl, auf. „Auf diese Weise nivellieren wir die quantenphysikalisch bedingten Unregelmäßigkeiten im Detektorsignal“, so Schnabel weiter.

Nach einer längeren Testphase seit April vergangenen Jahres bei GEO600 kommt der Quetschlichtlaser jetzt bei der Suche nach Gravitationswellen zum Einsatz. Damit hat die Technologie des gequetschten Lichts die Feuerprobe in der Anwendung bestanden. Demnächst planen auch die amerikanischen Kollegen innerhalb der LVC, einen Quetschlichtlaser an den LIGO-Detektoren zu testen.

Ansprechpartner

Dr. Roman Schnabel
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-19169
E-Mail: roman.schnabel@aei.mpg.de
Dr. Hartmut Grote
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-6133
E-Mail: hartmut.grote@aei.mpg.de
Dr. Felicitas Mokler
Public Relations
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17098
E-Mail: felicitas.mokler@aei.mpg.de
Publikationsreferenz
Roman Schnabel und Hartmut Grote für die LIGO Virgo Science Collaboration
A gravitational wave observatory operating beyond the quantum shot-noise limit
Nature Physics advance online publication, 11. September 2011

Dr. Roman Schnabel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4414996

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie