Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gequetschter Laser soll Gravitationswellen ans Licht bringen

12.09.2011
Dank eines Quantenphänomens messen Detektoren, die Schwingungen der Raum-Zeit nachspüren, um 50 Prozent genauer

Messen an den Grenzen der Naturgesetze – dieser Herausforderung stellen sich die Forscher bei der Suche nach Gravitationswellen immer wieder. Die hierbei eingesetzten Interferometer etwa messen so empfindlich, dass ein bestimmtes Quantenphänomen des Lichts – das Schrotrauschen – die Messgenauigkeit einschränkt. Mit der Methode des „Squeezed Light“ nutzen Max-Planck- und Uniwissenschaftler aus Hannover im Gegenzug ebenfalls die Quantenphysik, um den störenden Effekt zu beseitigen. Das neuartige Laserlicht erhöht die Messgenauigkeit des Gravitationswellendetektors GEO600 um 50 Prozent und steigert so seine effektive Empfindlichkeit. Damit kommt diese Technologie auch erstmals weltweit außerhalb eines Testlabors zur Anwendung. Die Ergebnisse werden im Fachjournal Nature Physics am 11. September vorab online veröffentlicht.


Der neue Quetschlichtlaser von GEO600. Ein hochkomplexes Lasersystem erzeugt im Gravitationswellendetektor besonders ruhiges Licht. © Albert-Einstein-Institut

Rund 50 Jahre nach der Entwicklung des ersten Lasers lässt sich mit der Technologie des gequetschten Lichts („squeezed light“) eine ganz neue Qualität von Laserlicht erzeugen. Das Licht aus einem Quetschlichtlaser strahlt sehr viel ruhiger als solches aus einer herkömmlichen Laserquelle. „Dank des Quetschlichtlasers konnten wir die Messempfindlichkeit von GEO600 um das 1,5-fache steigern“, sagt Hartmut Grote, der den Detektorbetrieb leitet. „Die neuartige Lichtquelle erfüllt alle Anforderungen wie erwartet.“ In Zukunft ließe sich die Messgenauigkeit mit dieser Technologie sogar verdoppeln. Bei der Suche nach den nur schwer detektierbaren Gravitationswellen ist diese Steigerung der Empfindlichkeit ein wichtiger Schritt zu deren direktem Nachweis.

Mit dem Experiment GEO600 am Exzellenzcluster QUEST (Center for Quantum Engineering and Space-Time Research)sind die Forscher vom Max-Planck-Institut für Gravitationsphysik (Teilinstitut Hannover, Albert-Einstein-Institut/AEI) und vom Institut für Gravitationsphysik der Leibniz Universität Hannover innerhalb der internationalen LIGO Virgo Collaboration (LVC) Gravitationswellen auf der Spur. Diese Schwingungen der Raum-Zeit sagte Einstein vor rund einem Jahrhundert in seiner Allgemeinen Relativitätstheorie vorher. Sie entstehen etwa bei turbulenten kosmischen Ereignissen wie Supernova-Explosionen.

Gravitationswellen machen sich auf der Erde jedoch kaum bemerkbar. Zum einen ist die Wechselwirkung zwischen Materie und Raum sehr schwach. Änderungen im Raum-Zeit-Gefüge, die in unserer nächsten astronomischen Umgebung durch Bewegungen verhältnismäßig massearmer Objekte wie Mond oder Planeten entstehen, liegen weit unterhalb des Messbaren. Turbulente Supernova-Explosionen, die die Raum-Zeit gewaltig durchschütteln, ereignen sich dagegen in großer Entfernung. Die dabei erzeugten Gravitationswellen erreichen die Erde deutlich abgeschwächt. Nur um rund ein Tausendstel eines Protondurchmessers würde sich die relative Messstrecke in einem Gravitationswellen-Detektor ändern, wenn sich eine Supernova innerhalb unserer Milchstraße ereignet. Mit GEO600 sind die Wissenschaftler inzwischen in der Lage, solche Längendifferenzen zu messen.

Laserlicht mit konstanter Intensität

Um so akkurat messen zu können, sind die Physiker auf möglichst störungsfreie Messtechnologien angewiesen. Einer der bisher störenden Effekte ist das sogenannte Schrotrauschen. Aufgrund ihrer Quantennatur prasseln die Photonen in zeitlich ungleichmäßigen Abständen auf die Photodiode im Detektor ein. Im Signal zeigt sich dies als fluktuierende Hintergrundhelligkeit. Eine Schwingung der Raum-Zeit, die eine ähnlich schwache Helligkeitsänderung hervorruft wie das Schrotrauschen, ist daher nur schwer auszumachen.

Roman Schnabel hat nun mit seiner Arbeitsgruppe in Hannover eine spezielle Lichtquelle entwickelt, mit der sich das störende Schrotrauschen eindämmen lässt. Eingebaut in GEO600 verhilft der Quetschlichtlaser dem Gravitationswellendetektor zu neuer Messempfindlichkeit. Damit ist GEO600 der erste Detektor, dessen Signalstrahl mit dem neuartigen Laserlicht geglättet wird.

Nach der Heisenbergschen Unschärferelation sind Intensität und Farbe eines Laserstrahls nicht gleichzeitig beliebig genau definierbar. Je exakter etwa die Intensität (genauer: Amplitude) festgelegt ist, umso unschärfer wird die Farbe (genauer: Phase). Diesen Effekt machen sich die Quantenphysiker zunutze, um das Schrotrauschen in dem GEO600-Experiment zu minimieren. Denn tatsächlich ist das Schrotrauschen nichts weiter als eine Ungenauigkeit der Laserintensität. Sie bereiten das Laserlicht derart auf, dass seine Intensität sehr genau definiert ist, also möglichst keine Schwankungen zeigt. Diesen Vorgang nennen die Fachleute auch „quetschen“. Dass die Lichtfarbe dabei ungenauer, also ein klein wenig „bunter“ wird, ist bei diesem Experiment nicht von Bedeutung, da diese Größe nicht in die Messdaten eingeht.

„Wir speisen das gequetschte Licht jetzt zusätzlich zu unserem normalen Laserlicht in das Interferometer ein“, erklärt Schnabel. „Wenn sich dann beide Lichtfelder überlagern, weist der resultierende Laserstrahl eine deutlich gleichmäßigere Intensität, verglichen mit dem ursprünglichen Signalstrahl, auf. „Auf diese Weise nivellieren wir die quantenphysikalisch bedingten Unregelmäßigkeiten im Detektorsignal“, so Schnabel weiter.

Nach einer längeren Testphase seit April vergangenen Jahres bei GEO600 kommt der Quetschlichtlaser jetzt bei der Suche nach Gravitationswellen zum Einsatz. Damit hat die Technologie des gequetschten Lichts die Feuerprobe in der Anwendung bestanden. Demnächst planen auch die amerikanischen Kollegen innerhalb der LVC, einen Quetschlichtlaser an den LIGO-Detektoren zu testen.

Ansprechpartner

Dr. Roman Schnabel
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-19169
E-Mail: roman.schnabel@aei.mpg.de
Dr. Hartmut Grote
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-6133
E-Mail: hartmut.grote@aei.mpg.de
Dr. Felicitas Mokler
Public Relations
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17098
E-Mail: felicitas.mokler@aei.mpg.de
Publikationsreferenz
Roman Schnabel und Hartmut Grote für die LIGO Virgo Science Collaboration
A gravitational wave observatory operating beyond the quantum shot-noise limit
Nature Physics advance online publication, 11. September 2011

Dr. Roman Schnabel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4414996

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie