Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geordnetes Chaos bei Atomen

25.03.2013
Ob Schneeflocken an der Fensterscheibe, unser Erbgut in den Zellen oder Galaxiehaufen im Weltraum – alle natürlichen Systeme und Prozesse streben nach einer Ordnung, denn ohne diese Selbstorganisation wäre etwa das Leben auf der Erde nicht möglich.

Doch was passiert, wenn man diese Ordnung in einen ungeordneten Zustand überführt?

Mit dieser Frage hat sich das Team um Professorin Giovanna Morigi und Professor Heiko Rieger von der Theoretischen Physik der Saar-Uni zusammen mit Forschern der Universitat Autonoma in Barcelona beschäftigt. Die Physiker haben untersucht, wie sich Atome verhalten, wenn sie von einem geordneten Zustand in einen ungeordneten überführt werden.

In einem Kristall sind Atome in einem Gitter gleichförmig angeordnet. Trifft nun in einem Experiment zum Beispiel Röntgenstrahlung auf den Kristall, passiert Folgendes: Ein Teil der Röntgenstrahlen kann die Kristallstruktur ungehindert passieren. Der andere Teil trifft auf die Atome, die wiederum selber Strahlen abgeben. Diese Lichtwellen überlagern sich und es kommt zur sogenannten Interferenz, das heißt, die Amplituden der Wellen werden entweder verstärkt oder abgeschwächt. In der Folge verlassen die Strahlen den Kristall in einem anderen Winkel als das eingestrahlte Licht. Auf einer Röntgenaufnahme würde dies in einem charakteristischen „Strahlen-Muster“ deutlich. Dieses Phänomen, die Bragg-Streuung, ist schon lange bekannt und wird genutzt, um Kristallstrukturen zu analysieren.

Auch die Physiker der Saar-Uni nutzen dieses Naturgesetz für ihre theoretische Studie, in der sie die Selbstorganisation von Atomen untersucht haben. Sie wollten wissen, wie man einen geordneten Zustand in einen ungeordneten, aber organisierten Zustand bringen kann. Für ihr Experiment haben sie Atome betrachtet, die ähnlich wie in einem Kristallgitter, in einer Art Käfig angeordnet sind.

„Das muss man sich so vorstellen, dass die einzelnen Atome ähnlich wie Eier in einem Eierkarton liegen“, erklärt Giovanna Morigi, Professorin für Theoretische Physik. „Der Abstand zwischen den Atomen ist hierbei größer als in einem Gitter.“ Im Versuch werden die Atome nun mit einer Lichtquelle bestrahlt. Sobald ein Lichtstrahl auf ein Atom trifft, emittiert dieses ein Lichtteilchen (ein Photon). Bis hierher würde alles nach den normalen Gesetzen der klassischen Optik verlaufen. In diesem Versuchsaufbau werden die Lichtteilchen, die aus dem Käfig herauskommen, allerdings durch zwei Spiegel reflektiert.

Auf diese Weise werden die Atome immer wieder von Lichtteilchen getroffen. Es kommt also zu einer positiven Rückkopplung und immer mehr Photonen werden von den Atomen freigesetzt. Dies führt schließlich dazu, dass die Atome ihre Position im Käfig verändern. „Diese Rückkopplungsschleife kann so zu interessanten Phänomenen der Selbstorganisation führen“, kommentiert Physik-Professor Heiko Rieger die Ergebnisse.

„Unsere Studie ist ein Beispiel für die Selbstorganisation von Quantensystemen, die stabil gegenüber Störungen und Verlusten sind.“ Das Verständnis solcher stabilen Quantensysteme, das sie Physiker der Saar-Uni mit ihren Modellen zu erlangen suchen, ist die Grundlage zur Realisierung von Quantentechnologien, für die eine Robustheit gegenüber störenden Einflüssen der Umgebung eine unabdingbare Voraussetzung sind. Solche Technologien umfassen nicht zuletzt Quantencomputer.

Die Ergebnisse der Studie wurden im renommierten Journal American Physical Review Letters veröffentlicht: DOI 10.1103/PhysRevLett.110.075304

Fragen beantworten:

Prof. Dr. Giovanna Morigi
Theoretische Physik
Tel.: 0681 302-57472
E-Mail: Giovanna.Morigi(at)physik.uni-saarland.de

Prof. Dr. Heiko Rieger
Theoretische Physik
Tel.: 0681 302-3969
E-Mail: h.rieger(at)mx.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie