Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnisse des Urknalls und der Dunklen Materie

26.04.2018

Im japanischen Forschungszentrum für Teilchenphysik KEK nimmt nach acht Jahren Bauzeit das neue Teilchenbeschleuniger-Experiment Belle II den Betrieb auf. Wissenschaftlerinnen und Wissenschaftler aus aller Welt warteten gespannt auf die Nachricht von den ersten Kollisionen. Auch 20 Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) sind an dem Experiment beteiligt. Mit den Daten von Belle II wollen sie die Vorgänge nach dem Urknall untersuchen und dem Geheimnis der Dunklen Materie auf die Spur kommen. Gestern Abend um 17.23 Uhr deutscher Zeit konnten die ersten Daten gemessen werden.

Der Detektor Belle II wurde 2010 als Nachfolger des erfolgreichen Belle-Experimentes konzipiert, das von 1999 bis 2010 betrieben wurde und einige aufsehenerregende Erkenntnisse der physikalischen Grundlagenforschung ermöglichte. Sein Standort ist das Teilchenphysik-Forschungszentrum KEK, das rund 55 Kilometer nordöstlich von Tokio in Tsukuba, in der Präfektur Ibaraki liegt.


Eines der ersten Kollisionsereignisse

(Foto: KEK)


Das neue Teilchenbeschleuniger-Experiment Belle II geht auf die Suche nach den Ursprüngen des Universums.

(Foto: Felix Metzner, KIT)

An diesem Teilchenbeschleuniger kollidieren Elektronen mit gegenläufigen Antiteilchen und erzeugen dabei schwere Quarks und Leptonen, Teilchen, die im heutigen Universum nicht mehr existieren. „Während der Large Hadron Collider am CERN der Beschleuniger mit den höchsten Energien ist – dort wurde 2012 das Higgs-Boson entdeckt – besitzt der japanische Superbeschleuniger die hundertfache Intensität gegenüber den bisher betriebenen Anlagen“, erläutert Florian Bernlochner, Professor am Institut für Experimentelle Teilchenphysik des KIT, die Vorzüge des neuen Detektors.

Mit den Daten wollen Forscher Vorgänge kurz nach dem Urknall präzise untersuchen. Von besonderem Interesse ist die Erzeugung von sogenannten b-Quarks und deren Antiteilchen: bis zu 50 Milliarden dieser Materie-Antimaterie-Paare sollen in den kommenden acht Jahren produziert werden. Nach einer Lebenszeit von nur gerade mal anderthalb Billionstel Sekunden (10-12 s) zerfallen diese schweren Quarks in leichtere, stabile Teilchen. Dabei verletzen sie die sogenannte CP-Symmetrie (für diese Entdeckung gab es 2012 einen Nobelpreis), indem sich Materie und Antimaterie bei ihren jeweiligen Zerfällen leicht anders verhalten.

„Die Größe dieser Asymmetrie reicht allerdings nicht aus, um zu erklären, warum im frühen Universum bei der Abkühlung ein Überschuss an Materie übrig blieb. Aus diesem Überschuss setzt sich die heutige sichtbare Welt zusammen“, so Professor Bernlochner.

Das Belle II-Experiment sucht deshalb nach neuen Quellen von CP-Verletzung und neuen Phänomenen und Elementarteilchen. Von besonderer Wichtigkeit werden die Suchen nach dunkler Materie sein. Dunkle Materie ist nicht direkt sichtbar und interagiert nur schwach mit normaler Materie: Das Belle II-Experiment wird mittel-leichte Teilchen mit noch nie dagewesener Präzision suchen können.

Im KIT haben mehrere Institute wichtige Beiträge für das Belle II-Experiment geliefert: Das Institut für Theoretische Teilchenphysik hat maßgeblich zu der Entwicklung des vorgesehenen Physikprogramms beigetragen. Am Institut für Experimentelle Teilchenphysik wurden viele der zentralen Rekonstruktionsalgorithmen für das Belle II-Experiment entwickelt und implementiert. Nicht zuletzt wurden mit den Daten des inzwischen abgelösten Belle-Experimentes wichtige Vorstudien für die physikalischen Phänomene durchgeführt, die nun gemessen werden sollen. Das Institut für Technik und Informationsverarbeitung entwickelte neue Hardware, welche es erlaubt nach neuen Phänomenen in seltenen Zerfällen von Tau-Leptonen zu suchen. Am Institut für Prozessdatenverarbeitung und Elektronik und dem ASIC- und Detektorlabor wurden die strahlenharten Mikrochips für die Ansteuerung und Auslese von Pixelsensoren entwickelt.

Weitere Informationen auch in der aktuellen Presseinformation des japanischen Forschungszentrums KEK:
https://www.kek.jp/en/newsroom/2018/04/26/0700/

Aktuelles Fotomaterial des KEK zum Download:
https://www.kek.jp/ja/imagearchive/2018/04/26/0700/

Weitere Materialien:
Video zum Experiment Belle II: http://www.etp.kit.edu/belle2.php

Weiterer Pressekontakt:
Dr. Joachim Hoffmann, Redaktionsleiter, Tel.: +49 721 608-21151, E-Mail: Joachim.hoffmann@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Weitere Informationen:

https://www.kek.jp/en/newsroom/2018/04/26/0700/
https://www.kek.jp/ja/imagearchive/2018/04/26/0700/
http://www.etp.kit.edu/belle2.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics