Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnis des Weltrekordmaterials Eisen-Antimonid gelüftet

30.06.2015

Eisen-Antimonid kann Temperatur- und Spannungsunterschiede ineinander umwandeln. Warum das in diesem Material so extrem gut klappt, konnten Rechnungen an der TU Wien nun erstmals erklären.

Maschinen erzeugen Abwärme, also ungenutzte, verlorene Energie. Mit speziellen Materialien kann man einen Teil dieser Energie allerdings wieder zurückgewinnen. Sogenannte „Thermoelektrika“ können Temperaturunterschiede, etwa zwischen einem heißen Motor und der kühlen Umgebungsluft, in elektrische Energie umwandeln.


Ein zusätzliches Eisenatom (unten rechts) ändert die Eigenschaften des Materials.

TU Wien


Die Atome im Festkörper verhalten sich so ähnlich wie kleine Kügelchen auf einem Tuch. Wenn auf einer Seite gerüttelt wird, bewegen sich die Teilchen eher auf die andere Seite.

TU Wien

Auch der umgekehrte Vorgang ist möglich: Mit den passenden Materialien kann man durch elektrischen Strom Temperaturunterschiede erzeugen und somit einen Kühleffekt erreichen – ganz ohne Kühlflüssigkeit und Pumpen, wie sie in unseren heutigen Kühlschränken eingebaut sind.

Eisen-Antimonid ist Weltrekordhalter unter den Thermoelektrika, in keinem anderen Material ist die Kopplung von Elektrizität und Temperaturunterschieden, der thermoelektrische Powerfaktor, so stark. Warum das so ist, war bisher ein Rätsel – an der TU Wien fand man nun aber die Erklärung: Der extreme thermoelektrische Effekt in Eisen-Antimonid liegt einerseits in kleinen Unregelmäßigkeiten im Material, und andererseits an kollektiven Schwingungen der Atome, die die Elektronen mit sich reißen.

Quantensimulationen am Computer

Ob ein Material thermoelektrische Effekte zeigt oder nicht, kann das Team von Prof. Karsten Held am Institut für Festkörperphysik der TU Wien mit quantenphysikalischen Computersimulationen berechnen. „Nach herkömmlichen Theorien über Thermoelektrizität müsste der Effekt in Eisen-Antimonid eigentlich viel kleiner sein“, sagt Jan Tomczak (TU Wien). Man analysierte das Material daher genauer und entdeckte Erstaunliches.

Elektronen können in einem Material nicht völlig beliebige Energien annehmen. Man unterscheidet zwischen einem niederen Energiebereich, in dem die Elektronen an bestimmte Atome gebunden sind, und Elektronen in einem höheren Energiebereich, die sich frei bewegen und somit zum elektrischen Strom beitragen können.

„Unsere Berechnungen zeigen, dass kleine Unregelmäßigkeiten im Eisen-Antimonid, etwa zusätzliche Eisen-Atome, einen Einfluss darauf haben, welche Energien physikalisch erlaubt sind“, erklärt Marco Battiato (TU Wien). Durch diese Unregelmäßigkeiten entstehen neue erlaubte Zustände in dem Energiebereich, der sonst verboten wäre.

„Diese Elektronenzustände wiederum haben eine wichtige Eigenschaft“, sagt Karsten Held, „sie koppeln an Vibrationen der Atome, an sogenannte Phononen. Dort wo es warm ist, sind diese Schwingungen stärker als in kälteren Bereichen, und dadurch tragen die Vibrationen zum elektrischen Strom bei.“ Man kann sich die Elektronen so ähnlich vorstellen wie kleine Kugeln, die sich auf einem gespannten Tuch bewegen. Wenn man das Tuch auf einer Seite rüttelt, nehmen die Kugeln diese Energie auf und bewegen sich auf die andere Seite.

Weiterhin viel zu tun

Für die Rückgewinnung von Energie aus Abwärme ist Eisen-Antimonid nicht gut geeignet, denn besonders hohe thermoelektrische Eigenschaften zeigt es bei sehr niedrigen Temperaturen. Man könnte es allerdings für neue Kühl-Technologien nutzen. Ähnliche Mechanismen wie die Entstehung zusätzlicher Energiezustände und der Elektronentransport durch Schwingungen in Eisen-Antimonid könnten auch in anderen Materialien eine Rolle spielen – man wird sie in Zukunft bei der Forschung an Thermoelektrika jedenfalls mitberücksichtigen müssen. Für eine kommerzielle Anwendung muss auch die Wärmeleitfähigkeit reduziert werden, beispielsweise durch Nanostrukturierung. Demnächst wird das Team genauer untersuchen, welches Ausmaß an Unregelmäßigkeiten im Material das größte Maß an Thermoelektrizität erzeugt.

Rückfragehinweis:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/eisen_antimonid/ Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics