Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnis des Weltrekordmaterials Eisen-Antimonid gelüftet

30.06.2015

Eisen-Antimonid kann Temperatur- und Spannungsunterschiede ineinander umwandeln. Warum das in diesem Material so extrem gut klappt, konnten Rechnungen an der TU Wien nun erstmals erklären.

Maschinen erzeugen Abwärme, also ungenutzte, verlorene Energie. Mit speziellen Materialien kann man einen Teil dieser Energie allerdings wieder zurückgewinnen. Sogenannte „Thermoelektrika“ können Temperaturunterschiede, etwa zwischen einem heißen Motor und der kühlen Umgebungsluft, in elektrische Energie umwandeln.


Ein zusätzliches Eisenatom (unten rechts) ändert die Eigenschaften des Materials.

TU Wien


Die Atome im Festkörper verhalten sich so ähnlich wie kleine Kügelchen auf einem Tuch. Wenn auf einer Seite gerüttelt wird, bewegen sich die Teilchen eher auf die andere Seite.

TU Wien

Auch der umgekehrte Vorgang ist möglich: Mit den passenden Materialien kann man durch elektrischen Strom Temperaturunterschiede erzeugen und somit einen Kühleffekt erreichen – ganz ohne Kühlflüssigkeit und Pumpen, wie sie in unseren heutigen Kühlschränken eingebaut sind.

Eisen-Antimonid ist Weltrekordhalter unter den Thermoelektrika, in keinem anderen Material ist die Kopplung von Elektrizität und Temperaturunterschieden, der thermoelektrische Powerfaktor, so stark. Warum das so ist, war bisher ein Rätsel – an der TU Wien fand man nun aber die Erklärung: Der extreme thermoelektrische Effekt in Eisen-Antimonid liegt einerseits in kleinen Unregelmäßigkeiten im Material, und andererseits an kollektiven Schwingungen der Atome, die die Elektronen mit sich reißen.

Quantensimulationen am Computer

Ob ein Material thermoelektrische Effekte zeigt oder nicht, kann das Team von Prof. Karsten Held am Institut für Festkörperphysik der TU Wien mit quantenphysikalischen Computersimulationen berechnen. „Nach herkömmlichen Theorien über Thermoelektrizität müsste der Effekt in Eisen-Antimonid eigentlich viel kleiner sein“, sagt Jan Tomczak (TU Wien). Man analysierte das Material daher genauer und entdeckte Erstaunliches.

Elektronen können in einem Material nicht völlig beliebige Energien annehmen. Man unterscheidet zwischen einem niederen Energiebereich, in dem die Elektronen an bestimmte Atome gebunden sind, und Elektronen in einem höheren Energiebereich, die sich frei bewegen und somit zum elektrischen Strom beitragen können.

„Unsere Berechnungen zeigen, dass kleine Unregelmäßigkeiten im Eisen-Antimonid, etwa zusätzliche Eisen-Atome, einen Einfluss darauf haben, welche Energien physikalisch erlaubt sind“, erklärt Marco Battiato (TU Wien). Durch diese Unregelmäßigkeiten entstehen neue erlaubte Zustände in dem Energiebereich, der sonst verboten wäre.

„Diese Elektronenzustände wiederum haben eine wichtige Eigenschaft“, sagt Karsten Held, „sie koppeln an Vibrationen der Atome, an sogenannte Phononen. Dort wo es warm ist, sind diese Schwingungen stärker als in kälteren Bereichen, und dadurch tragen die Vibrationen zum elektrischen Strom bei.“ Man kann sich die Elektronen so ähnlich vorstellen wie kleine Kugeln, die sich auf einem gespannten Tuch bewegen. Wenn man das Tuch auf einer Seite rüttelt, nehmen die Kugeln diese Energie auf und bewegen sich auf die andere Seite.

Weiterhin viel zu tun

Für die Rückgewinnung von Energie aus Abwärme ist Eisen-Antimonid nicht gut geeignet, denn besonders hohe thermoelektrische Eigenschaften zeigt es bei sehr niedrigen Temperaturen. Man könnte es allerdings für neue Kühl-Technologien nutzen. Ähnliche Mechanismen wie die Entstehung zusätzlicher Energiezustände und der Elektronentransport durch Schwingungen in Eisen-Antimonid könnten auch in anderen Materialien eine Rolle spielen – man wird sie in Zukunft bei der Forschung an Thermoelektrika jedenfalls mitberücksichtigen müssen. Für eine kommerzielle Anwendung muss auch die Wärmeleitfähigkeit reduziert werden, beispielsweise durch Nanostrukturierung. Demnächst wird das Team genauer untersuchen, welches Ausmaß an Unregelmäßigkeiten im Material das größte Maß an Thermoelektrizität erzeugt.

Rückfragehinweis:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/eisen_antimonid/ Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie