Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnis des Weltrekordmaterials Eisen-Antimonid gelüftet

30.06.2015

Eisen-Antimonid kann Temperatur- und Spannungsunterschiede ineinander umwandeln. Warum das in diesem Material so extrem gut klappt, konnten Rechnungen an der TU Wien nun erstmals erklären.

Maschinen erzeugen Abwärme, also ungenutzte, verlorene Energie. Mit speziellen Materialien kann man einen Teil dieser Energie allerdings wieder zurückgewinnen. Sogenannte „Thermoelektrika“ können Temperaturunterschiede, etwa zwischen einem heißen Motor und der kühlen Umgebungsluft, in elektrische Energie umwandeln.


Ein zusätzliches Eisenatom (unten rechts) ändert die Eigenschaften des Materials.

TU Wien


Die Atome im Festkörper verhalten sich so ähnlich wie kleine Kügelchen auf einem Tuch. Wenn auf einer Seite gerüttelt wird, bewegen sich die Teilchen eher auf die andere Seite.

TU Wien

Auch der umgekehrte Vorgang ist möglich: Mit den passenden Materialien kann man durch elektrischen Strom Temperaturunterschiede erzeugen und somit einen Kühleffekt erreichen – ganz ohne Kühlflüssigkeit und Pumpen, wie sie in unseren heutigen Kühlschränken eingebaut sind.

Eisen-Antimonid ist Weltrekordhalter unter den Thermoelektrika, in keinem anderen Material ist die Kopplung von Elektrizität und Temperaturunterschieden, der thermoelektrische Powerfaktor, so stark. Warum das so ist, war bisher ein Rätsel – an der TU Wien fand man nun aber die Erklärung: Der extreme thermoelektrische Effekt in Eisen-Antimonid liegt einerseits in kleinen Unregelmäßigkeiten im Material, und andererseits an kollektiven Schwingungen der Atome, die die Elektronen mit sich reißen.

Quantensimulationen am Computer

Ob ein Material thermoelektrische Effekte zeigt oder nicht, kann das Team von Prof. Karsten Held am Institut für Festkörperphysik der TU Wien mit quantenphysikalischen Computersimulationen berechnen. „Nach herkömmlichen Theorien über Thermoelektrizität müsste der Effekt in Eisen-Antimonid eigentlich viel kleiner sein“, sagt Jan Tomczak (TU Wien). Man analysierte das Material daher genauer und entdeckte Erstaunliches.

Elektronen können in einem Material nicht völlig beliebige Energien annehmen. Man unterscheidet zwischen einem niederen Energiebereich, in dem die Elektronen an bestimmte Atome gebunden sind, und Elektronen in einem höheren Energiebereich, die sich frei bewegen und somit zum elektrischen Strom beitragen können.

„Unsere Berechnungen zeigen, dass kleine Unregelmäßigkeiten im Eisen-Antimonid, etwa zusätzliche Eisen-Atome, einen Einfluss darauf haben, welche Energien physikalisch erlaubt sind“, erklärt Marco Battiato (TU Wien). Durch diese Unregelmäßigkeiten entstehen neue erlaubte Zustände in dem Energiebereich, der sonst verboten wäre.

„Diese Elektronenzustände wiederum haben eine wichtige Eigenschaft“, sagt Karsten Held, „sie koppeln an Vibrationen der Atome, an sogenannte Phononen. Dort wo es warm ist, sind diese Schwingungen stärker als in kälteren Bereichen, und dadurch tragen die Vibrationen zum elektrischen Strom bei.“ Man kann sich die Elektronen so ähnlich vorstellen wie kleine Kugeln, die sich auf einem gespannten Tuch bewegen. Wenn man das Tuch auf einer Seite rüttelt, nehmen die Kugeln diese Energie auf und bewegen sich auf die andere Seite.

Weiterhin viel zu tun

Für die Rückgewinnung von Energie aus Abwärme ist Eisen-Antimonid nicht gut geeignet, denn besonders hohe thermoelektrische Eigenschaften zeigt es bei sehr niedrigen Temperaturen. Man könnte es allerdings für neue Kühl-Technologien nutzen. Ähnliche Mechanismen wie die Entstehung zusätzlicher Energiezustände und der Elektronentransport durch Schwingungen in Eisen-Antimonid könnten auch in anderen Materialien eine Rolle spielen – man wird sie in Zukunft bei der Forschung an Thermoelektrika jedenfalls mitberücksichtigen müssen. Für eine kommerzielle Anwendung muss auch die Wärmeleitfähigkeit reduziert werden, beispielsweise durch Nanostrukturierung. Demnächst wird das Team genauer untersuchen, welches Ausmaß an Unregelmäßigkeiten im Material das größte Maß an Thermoelektrizität erzeugt.

Rückfragehinweis:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/eisen_antimonid/ Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie