Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefangene Elektronen leben länger

17.08.2009
Sind Elektronen in winzigen Strukturen im Nanometer-Bereich eingeschlossen, so zeigen sie einmalige Eigenschaften, die für neuartige Computer oder Halbleiter-Laser genutzt werden könnten.

Wissenschaftler von der britischen Universität Sheffield, der Ecole Normale Supérieure in Paris und vom Forschungszentrum Dresden-Rossendorf haben erstmalig die Lebenszeit von angeregten Elektronen gemessen und ihre Ergebnisse jetzt in der Fachzeitschrift "Nature Materials" veröffentlicht.

Die Fortschritte auf dem Gebiet der Photonik, auf dem Deutschland übrigens eine führende Rolle einnimmt, sind enorm. Dies zeigt die optische Datenspeicherung auf CDs und DVDs oder die Glasfaser-Technologie für das Internet. Viele technologische Anwendungen basieren darauf, dass Elektronen, die durch Anregung in einen höheren energetischen Zustand versetzt werden, lange dort verharren und nur langsam in ihren Ursprungszustand zurückkehren. Jeder Laser funktioniert so, und Halbleiter-Laser begegnen uns heute schon im Alltag auf Schritt und Tritt, z.B. an der Kasse im Supermarkt als Scanner. Für verbesserte Halbleiter-Laser, aber auch für zukünftige Technologien wie etwa die Quanteninformationsverarbeitung, wäre eine möglichst lange Lebensdauer von angeregten Elektronen wünschenswert.

Vor etwa 20 Jahren konnten Wissenschaftler erstmals sogenannte Quantenpunkte herstellen. Grundlage waren Halbleiter-Substrate beispielsweise aus Galliumarsenid (dieses Material ist im CD-Spieler verantwortlich für die optische Übertragung der Daten), auf denen Quantenpunkte aus anderen Halbleitermaterialien wuchsen. Diese Quantenpunkte sehen aus wie winzige Pyramiden und bestehen typischerweise aus 1.000 bis etwa 10.000 Atomen. Die Ausdehnung der Nano-Pyramiden ist so gering, dass die Elektronen quantenmechanischen Regeln gehorchen und nicht mehr frei beweglich sind. So können die Elektronen in Quantenpunkten nur bestimmte Energieniveaus einnehmen. Die Elektronen treffen zudem in allen drei Richtungen auf Begrenzungen und verhalten sich deshalb wie eine Art künstliches Atom, das in Zukunft der Ausgangspunkt für revolutionäre (opto-)elektronische Bauelemente sein könnte.

Damals wurde vorhergesagt, dass angeregte Elektronen in den Quantenpunkten eine extrem lange Lebenszeit hätten, weil sie in dem dreidimensionalen Gefängnis kaum eine Möglichkeit finden würden, um Energie abzugeben. Viele Jahre versuchten Forscher sich daran, dieses Rätsel, das "Phonon-Flaschenhals" genannt wurde, zu entschlüsseln. Vor einigen Jahren konnten weitere Forschungsarbeiten Licht ins Dunkel bringen: Gerade wegen der starken Begrenzung der Elektronen in den Quantenpunkten kann eine in der Fachwelt bekannte Theorie nicht zur Anwendung kommen, die besagt, dass die Elektronen Energie verlieren aufgrund der Schwingungen im Kristallgitter (Phononen genannt). Anstatt Energie an das Gitter abzugeben, schließen sich die Elektronen in den Nano-Pyramiden eng mit den Phononen zusammen und bilden so genannten Polaronen.

Wissenschaftler von der Universität von Sheffield in Großbritannien, der Ecole Normale Supérieure in Paris und vom Forschungszentrum Dresden-Rossendorf nahmen diese Theorie ernst und erzeugten Quantenpunkte, die sie einem akkuraten Test über einen breiten Parameterbereich unterziehen wollten. Neben der Zusammensetzung der Quantenpunkte spielen für deren ungewöhnliche Eigenschaften auch Form und Größe eine entscheidende Rolle. Das internationale Forscherteam stellte Quantenpunkte her, deren Energieniveaus signifikant niedriger waren als die Energie der Hauptschwingungen im Kristallgitter. Nur so war es möglich, die Lebensdauern der angeregten Elektronen signifikant zu verlängern. Die Forscher beobachteten eine tausendfache Verlängerung der Lebensdauer, wenn der Energieabstand nur halbiert wurde. Sie stieg von mehreren Pikosekunden (ein Millionstel einer Millionstel Sekunde) in den Bereich von Nanosekunden (ein Tausendstel einer Millionstel Sekunde) und verlängerte sich somit um drei Größenordnungen. Diese langen Lebenszeiten könnten einen Pool an neuen Anwendungen bedeuten, besonders für Terahertz-Laser auf Basis von Quantenpunkten. Der Grund: der Abstand der Energieniveaus liegt im Bereich von 10 bis 20 Millielektronenvolt (meV), was auch anders ausgedrückt werden kann als eine Frequenz von wenigen Terahertz.

Um die Lebenszeiten besonders akkurat messen zu können, nutzten die Forscher einen einmaligen Typ eines sehr kurz gepulsten Terahertz-Lasers, den so genannten Freie-Elektronen-Laser am Forschungszentrum Dresden-Rossendorf (FZD). Dieser spezielle Laser erzeugt besonders intensive Lichtpulse und überstreicht einen weiten Wellenlängen-Bereich (ungefährliche Infrarot- und Terahertz-Strahlung). Damit können viele unterschiedliche wissenschaftliche Fragestellungen aus Physik, Chemie und Biologie bearbeitet werden. In der aktuellen Zusammenarbeit wurde die Arbeit der britischen Forscher am Freie-Elektronen-Laser des FZD durch die Europäische Union im Rahmen des "transnational access programme" gefördert.

Die Ergebnisse wurden vor kurzem veröffentlicht in der Fachzeitschrift "Nature Materials": "Long lifetimes of quantum-dot intersublevel transitions in the terahertz range", E. A. Zibik(1), T. Grange(2), B. A. Carpenter(1), N. E. Porter(1), R. Ferreira(2), G. Bastard(2), D. Stehr(3), S.Winnerl(3), M. Helm(3), H. Y. Liu(4), M. S. Skolnick(1), L. R.Wilson(1), in: Nature Materials, Advance Online Publication (AOP), 16 August 2009, DOI: 10.1038/NMAT2511.

http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2511.html

(1)Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
(2)Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France.
(3)Institute of Ion Beam Physics and Material Research, Forschungszentrum Dresden-Rossendorf, PO Box 510119, 01314 Dresden, Germany.

(4)EPSRC National Centre for III-V Technologies, Sheffield S1 3JD, UK.

Weitere Informationen:
Dr. Luke Wilson
University of Sheffield
Department of Physics and Astronomy
Tel.: +44 (0)114 22 23532
E-Mail: luke.wilson@sheffield.ac.uk
Prof. Manfred Helm
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Ionenstrahlphysik und Materialforschung
Tel.: ++49 351 260 - 2260
E-Mail: m.helm@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Presse und Öffentlichkeitsarbeit
Bautzner Landstr. 400, 01328 Dresden
Tel.: ++49 351 260 - 2450 or ++49 160 969 288 56
E-Mail: presse@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2511.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise